Determination of Aflatoxin M$_1$ in Pasteurized and UHT Milk in West-Azerbaijan Province of Iran

H. Tajik1, M. Moradi1*, S.M. Razavi Rohani1, M.Hadian2

1. Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
2. Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

Background: Aflatoxin M$_1$ (AFM$_1$) as a carcinogenic and toxic compound has considerable significance from public health viewpoint. The aim of this study was to determine the level of AFM$_1$ in pasteurized and UHT milk in West-Azerbaijan province of Iran.

Methods: A total of 360 commercial milk samples including 220 pasteurized milk and 140 ultra-high-temperature (UHT) milk were purchased randomly from large supermarkets and retail shops in seven different cities of West-Azerbaijan province of Iran. Concentration of AFM$_1$ in the samples was investigated by enzyme-linked immunosorbent assay (ELISA) method. Statistical analyses were carried out using SPSS version 16.0.

Results: From total of 360 samples, 77.7% (n=280) were contaminated to AFM$_1$ with a mean of 75.8±9.2 ng/l. Seventy percent (n=154) of pasteurized milk and 54.2% (n=76) of UHT milk, exceeded the limits recommended by European commission (EC) regulations (50 ng/l). Besides, 2.27% of pasteurized milk (n=5) and 2.1% of UHT milk (n=3) exceeded the prescribed limit of institute of standards and industrial research of Iran (ISIRI) and US food and drug administration (FDA) regulations (500 ng/l). Mean content of AFM$_1$ in contaminated pasteurized and UHT milk samples were 76.2±8.4 and 72.6±7.2 ng/l, respectively with no significant difference (p>0.05).

Conclusion: We found high presence of AFM$_1$ in milk samples which may pose a serious health hazard to local people. Therefore, milk and dairy products should be monitored continuously for this issue. Also, it is necessary to educate dairy farmers about effective ways to reduce aflatoxin contamination.

Introduction

Aflatoxins are a group of structurally related mycotoxin which consist of four naturally occurring compounds including aflatoxin B$_1$, B$_2$, G$_1$ and G$_2$, which are mainly produced by three species of moulds namely Aspergillus flavus, A. parasiticus and rarely A. nomius (Esllami et al., 2015; Fallah et al., 2009; Heshmati, 2010; Khodadadi et al., 2014; Nemati et al., 2010; Norian et al., 2015). Aflatoxin B$_1$ (AFB$_1$) has strong teratogenic, mutagenic, and carcinogenic effects (Barikbin et al., 2015; Fallah et al., 2009). Aflatoxin M$_1$ (AFM$_1$) is a monohydroxylated derivate of AFB$_1$, which in liver is metabolized by cytochrome P450. It is excreted into the milk of both human and lactating animals (Fallah et al., 2009; Gurbay et al., 2010; Kamkar, 2005; Mason et al., 2015; Montaseri et al.)
2014). A direct relationship has been shown between the amount of AFB$_1$ consumption and the secreted AFM$_1$ in milk. It has been shown that in 0.3-6.2% consumed AFB$_1$ by animals is secreted into milk as AFM$_1$ (Ayar et al., 2007; Creppy, 2002; Fallah et al., 2009; Unusan, 2006). The content of AFM$_1$ in milk is not significantly affected by thermal process, pasteurization and ultra-high-temperature (UHT) treatment, or storage of dairy products (Prandini et al., 2009). Although AFM$_1$ is less carcinogenic and mutagenic than AFB$_1$ as its parental compound (Battacone et al., 2005), but the international agency for research on cancer (IARC, 2002) has categorized it from group 2 to group 1 according to the recent investigations on its carcinogenicity.

Milk and dairy products constitute an important part of people’s diet providing as a good source of calcium and proteins. Therefore, presence of aflatoxin in these products poses an important hygienic risk in human health (Heshmati and Milani, 2010). Considering its public health significance, many countries have set maximum limits for aflatoxin, which vary among countries. European community (EC) has prescribed the maximum acceptable level of AFM$_1$ in liquid milk as 50 ng/l (EC, 2001). Both, US food and drug administration (FDA, 1996) and institute of standards and industrial research of Iran (ISIRI, 2005) have set the maximum level of 500 ng/l of AFM$_1$ in liquid milk. This study was aimed to determine the levels of AFM$_1$ in pasteurized and UHT milk marketed in West-Azerbaijan province as a main dairy producing region in Iran.

Materials and methods

Samples

A total of 360 commercial milk samples (220 pasteurized milk and 140 UHT milk) from 17 different brands were purchased randomly from large supermarkets and retail shops in seven different cities of West-Azerbaijan province in North-West of Iran from January to February 2012. All samples were stored at 4 °C and tested for presence of AFM$_1$ before their expiry date.

Sample preparation

Each sample was centrifuged at 3500 g for 10 min at 10 °C. After that, upper creamy layer was removed by a Pasteur pipette and then the lower phase was provided for the next quantitative test.

ELISA assay

The concentrations of AFM$_1$ were determined using the enzyme linked immunosorbenet assay (ELISA). A RIDASCREEN® competitive enzyme immunoassay kit (R-Biopharm, Darmstadt, Germany) based on antigen–antibody reaction was used for the quantitative analysis of AFM$_1$. Briefly, 100 µl standard solution and defatted milk samples were added into each well of micro-titer plate and then incubated in the dark for 40 min at room temperature. In the next step, the liquid was removed and each well was washed twice with 250 µl washing buffer. After that, 100 µl diluted enzyme conjugate was separately added to each well and incubated in dark for about 15 min at room temperature. Each well was washed twice with washing buffer. Subsequently, 100 µl substrate containing 50 µl urea peroxidase and 50 µl tetramethylbenzidine as chromogen was added to each well and mixed thoroughly and incubated in the dark at room temperature for 15 min. In the last stage, 100 µl of the stop reagent (1 N H$_2$SO$_4$) was added into each well and the optical densities (OD) were measured at 450 nm using a ELX800 microplate reader (Bio-Tek Instruments, Winooski, Vermont, USA) within 15 min. Five ng/l was considered as the lowest detection limit in milk, based on the manufacturer’s guideline. Validation of ELISA was carried out by determination of recoveries and the mean variation coefficient (CV) for milk samples spiked with different concentrations of AFM$_1$ (10, 50, 150, 250, and 500 ng/l). The mean recovery score in spiked milk samples was 96.2% with a CV of 8.5%. According to the manufacturer’s guideline, the recovery rate in spiked milk was 95% with a CV of 14%.

Statistical analyses

Statistical analyses were performed using SPSS version 16.0 (SPSS, Inc., Chicago, IL). Data were analyzed by ANOVA and reported as mean±SE. The levels were considered significantly different at p values less than 0.05.

Results and discussion

Out of 360 milk samples, 77.7% (n=280) found to be contaminated to AFM$_1$, with a mean of 75.8±9.2 ng/l (Table 1). AFM$_1$ was found above measurable level (5 ng/l) in 85% (n=187) and 66.4% (n=93) of pasteurized and UHT milk samples, respectively (Table 2). In 63.8% of the total samples, 70% (n=154) of pasteurized milk and 54.2% (n=76) of UHT milk, AFM$_1$ level exceeded the limits recommended by EC regulations. On the other hand, the levels of AFM$_1$ in eight of the total samples, 2.27% (n=5) of pasteurized milk and 2.1% (n=3) of UHT milk, were exceeded the prescribed limit of US and ISIRI regulations.

As shown in Table 3, AFM$_1$ levels in milk samples in the present study were higher than most of the other previous similar researches performed in other regions of...
Iran. In some previous mentioned investigations, a direct relationship has been shown between season and contamination rate of AFM₁ in milk. For example, Nemati et al. (2010) revealed that the mean level of AFM₁ in milk samples was significantly higher in winter compared to summer (56.3 versus 17.4 ng/l) in Ardabil province of Iran, suggesting a strong relationship between season and AFM₁ residue. This phenomenon may be attributed to relation between type of feed intake and the AFM₁ levels in milk resulting from intake of high AFB₁ residue in concentrated feed and silage in winter compared to low risk of AFB₁ intake during summer when the green pasture composed the major part of feeds of lactating animals, i.e. cattle, sheep and goat. In our work, sampling was carried out from January to February which this duration time is coincided with winter in Iran. So, such high AFM₁ contamination rate in this study may be related to sampling season. On the other hand, in contrast to most arid and semi-arid parts of Iran, the North-West areas of this country in which West-Azerbaijan province is located, has a cold weather, explaining this finding.

In this study, mean content of AFM₁ in contaminated pasteurized and UHT milk samples were 76.2±8.4 and 72.6±7.2 ng/l, respectively with no significant (p>0.05) difference. Similar level of AFM₁ in both pasteurized and UHT milk samples is probably due to this fact that raw bulk milk obtained from lactating animal farms and introduced to Iranian dairy companies for manufacturing of both pasteurized and UHT milk, are originally the same.

Table 1: Concentrations of AFM₁ in commercial liquid milk in West-Azerbaijan province of Iran

<table>
<thead>
<tr>
<th>Milk product</th>
<th>Sample size</th>
<th>Positive samples No. (%)</th>
<th>Concentration (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total samples (Mean(SE))</td>
<td>Positive samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min-Max</td>
<td>Exceed legal limit N (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean(SE)</td>
<td>Min-Max</td>
</tr>
<tr>
<td>pasteurized milk</td>
<td>220</td>
<td>187 (85)</td>
<td>54.9±7.1</td>
</tr>
<tr>
<td>UHT milk</td>
<td>140</td>
<td>93 (66.4)</td>
<td>41.6±8.0</td>
</tr>
<tr>
<td>total</td>
<td>360</td>
<td>280 (77.7)</td>
<td>50.4±9.7</td>
</tr>
</tbody>
</table>

* Institute of standards and industrial research of Iran (ISIRI) and food and drug administration (FDA) limits for AFM₁ in milk are 500 ng/l

Table 2: Occurrence of AFM₁ in milk samples in West-Azerbaijan province of Iran based to difference toxin ranges

<table>
<thead>
<tr>
<th>Range of AFM₁ concentration (ng/l)</th>
<th>Pasteurized milk, N (%)</th>
<th>UHT milk, N (%)</th>
<th>Total, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 ng/l</td>
<td>33 (15)</td>
<td>47 (33.5)</td>
<td>80 (22.2)</td>
</tr>
<tr>
<td>5-50 ng/l</td>
<td>33 (15)</td>
<td>17 (12.1)</td>
<td>50 (13.8)</td>
</tr>
<tr>
<td>51-150 ng/l</td>
<td>89 (40.4)</td>
<td>51(36.4)</td>
<td>161 (44.7)</td>
</tr>
<tr>
<td>151-250 ng/l</td>
<td>42 (19)</td>
<td>13 (9.2)</td>
<td>36 (10)</td>
</tr>
<tr>
<td>251-500 ng/l</td>
<td>18 (8.1)</td>
<td>9 (6.4)</td>
<td>25 (6.9)</td>
</tr>
<tr>
<td>>500 ng/l</td>
<td>5 (2.27)</td>
<td>3 (2.1)</td>
<td>8 (2.2)</td>
</tr>
</tbody>
</table>

* Distribution of negative samples

Table 3: Published studies in databases about AFM₁ level in milk samples in other regions of Iran

<table>
<thead>
<tr>
<th>Location (Gazvin)</th>
<th>Milk type</th>
<th>Sample size</th>
<th>Samples (%) with AFM₁ level of >50 ng/l</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran (Gazvin)</td>
<td>raw</td>
<td>170</td>
<td>33.52</td>
<td>Norian et al. (2015)</td>
</tr>
<tr>
<td>Iran (Gazvin)</td>
<td>raw</td>
<td>254</td>
<td>56.7</td>
<td>Fallah et al. (2015)</td>
</tr>
<tr>
<td>Iran (Tabriz)</td>
<td>pasteurized</td>
<td>50</td>
<td>62</td>
<td>Movassagh Ghazani (2009)</td>
</tr>
<tr>
<td>Iran (Sarab)</td>
<td>raw</td>
<td>111</td>
<td>40</td>
<td>Kamkar (2005)</td>
</tr>
<tr>
<td>Iran (Ardabil)</td>
<td>raw, sterilized and pasteurized</td>
<td>90</td>
<td>33.3</td>
<td>Nemati et al. (2010)</td>
</tr>
<tr>
<td>Iran (Tehran)</td>
<td>UHT</td>
<td>210</td>
<td>33.3</td>
<td>Heshmati and Milan (2010)</td>
</tr>
<tr>
<td>Iran (Urmia)</td>
<td>raw and pasteurized</td>
<td>144</td>
<td>6.25</td>
<td>Tajik et al. (2007)</td>
</tr>
<tr>
<td>Iran (central part)</td>
<td>pasteurized and UHT</td>
<td>225</td>
<td>22.2</td>
<td>Fallah (2010)</td>
</tr>
<tr>
<td>Iran (Shiraz)</td>
<td>pasteurized</td>
<td>624</td>
<td>17.8</td>
<td>Alborzi et al. (2006)</td>
</tr>
<tr>
<td>Iran (Ahwaz)</td>
<td>raw</td>
<td>311</td>
<td>12.5</td>
<td>Rahimi et al. (2010)</td>
</tr>
</tbody>
</table>
Conclusion

This study showed high incidence of AFM₁ contamination in pasteurized and UHT milk samples from West-Azerbaijan province of Iran. Thus, consumption of these products could have a serious public health hazard. Monitoring and reduction of AFB₁ levels in farm animal feedstuffs are strongly recommended. The local public health authorities should educate the farmers, dairy companies and consumers about the potential health consequences of aflatoxins. Also, the milk and dairy products must be routinely monitored and the products with high levels of AFM₁ must not be considered for human consumption.

Conflicts of interest

There is no conflict of interest.

Acknowledgments

The authors would like to thank Urmia University Research Council for funding this study.

References

Fallah A.A. (2010). Assessment of aflatoxin M₁ contamination in pasteurized and UHT milk market in central part of Iran. Food and Chemical Toxicology. 48: 988-991.

