Chemical and Microbial Quality of Iranian Commercial Pasteurized Milk Samples at Their Expiration Date

M. Azizkhani *†, F. Tooryan

Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran

HIGHLIGHTS

- Mean pH value of the milk samples was 6.6.
- Mean sensory score of the milk samples was 6.4 according to nine point hedonic scale.
- Mean coliform count of the milk samples was 0.77 log₁₀ Colony Forming Unit (CFU)/ml.
- Mean Escherichia coli count of the milk samples was 0.01 log₁₀ CFU/ml.
- No significant relationship was found between various studied parameters and different milk brands.

ABSTRACT

Background: Milk can provide a good medium for growth and proliferation of various spoilage and pathogenic microorganisms. The main aim of this study was to evaluate the chemical and microbial quality of Iranian commercial pasteurized milk samples at their expiration date.

Methods: Hundred samples of pasteurized milk packaged in polyethylene pouches were randomly collected from local markets of Amol, North of Iran. Acidity, pH, total viable, coliforms and Escherichia coli counts were carried out at expiration date of the samples according to the standard procedures. Data were statistically analyzed using SPSS software (version 16.0, SPSS Inc., Chicago, IL, USA).

Results: The mean value of pH, acidity, and sensory score of the samples were obtained as 6.6, 0.15 g lactic acid/100 ml, and 6.4, respectively. Also, the mean value of total viable count, coliforms and E. coli counts of the samples were 4.11, 0.77, and 0.01 log₁₀ colony forming unit/ml, respectively. No significant relationship (p>0.05) was found between various studied parameters and different milk brands.

Conclusion: Storage of milk pouches out of refrigerator in supermarkets of Iran must be strictly avoided in order to improve chemical and quality of this product. Also, proper pasteurization process and reduction of post-pasteurization contamination are the other keys to produce high-quality pasteurized milk.

Introduction

As milk is a rich source of nutrients, it provides a good medium for growth and proliferation of various spoilage and pathogenic microorganisms which may cause early physicochemical and microbial deterioration. Pasteurization is the heat treatment of milk in order to destroy or reduction of microorganisms and also deactivation of undesirable enzymes. Several factors that influence the shelf-life of pasteurized milk such as chemical and microbial quality of the raw milk are duration of storage of raw milk before heat-treatment, the quality of heat-treatment, the population of heat-resistant bacteria, cross contamination after heat process, filling as well as packaging system, storage conditions of the product during distribution, and also maintenance of desirable temperature during the entire cold chain. Generally, shelf-life of pasteurized milk is 2 up to 20 days (Sarkar, 2015), but in Iran its shelf-life is usually determined

*Corresponding author. †m.azizkhani@ausmt.ac.ir

Journal website: http://www.jfqhc.com
about 3-5 days. Microbiological analysis of pasteurized milk have been attempted in many researches showed presence of pathogenic microorganisms (Aglawe and Wadatkar, 2012; Anderson et al., 2011; De Oliveira et al., 2011; Singh et al., 2011; Vahedi et al., 2013). Several reports have indicated that inadequate pasteurization and post-pasteurization contamination result in incidence of pathogenic bacteria in pasteurized milk and therefore milk-borne outbreaks have been occurred (Da Silva et al., 1998; Silva et al., 2010; Upton and Coia, 1994).

Numerous studies have evaluated the chemical and microbiological quality of pasteurized milk in different countries (Anderson et al., 2011; Belli et al., 2013; Breurec et al., 2010; Dey and Karim, 2013; Martin et al., 2012; Ranieri and Boor, 2009; Silva et al., 2010) and also some researches have been conducted in Iran (Karajibani et al., 2016; Teymori et al., 2014; Zolfaghari et al., 2012). However, based on our knowledge no microbial and chemical analysis have been carried out at expiration date of pasteurized milk distributed in Mazandaran province, Northern Iran that is the pole of dairy industry of the country; so, the main aim of this study was to evaluate the chemical and microbial quality of Iranian commercial pasteurized milk samples at their expiration date.

Materials and methods

Sample collection

In this cross-sectional study carried out in 2016, totally 100 samples of pasteurized milk from 10 different brands packaged in polyethylene pouches were randomly collected from local markets in different parts of Amol, Mazandaran province, North of Iran. The samples were transported to the laboratory in a cool box and kept in the refrigerator (4-8 °C) until their expiration date indicated on the package.

pH determination

The pH values of the samples were measured using a digital pH meter (Jenway, UK), calibrated routinely with fresh pH 4.01 and 6.86 standard buffers (ISIRI, 2006).

Acidity determination

The amount of lactic acid, as a result of lactose fermentation was measured through titration with NaOH according to ISIRI (2006).

Total viable count

Total viable counts were determined using 1 ml of suitable dilutions (10⁻¹ to 10⁻³) of milk samples on pour-plates of plate count agar (Merck-Darmstadt, Germany) incubated at 32 °C for 48 h. Dishes that contained 30-300 colonies were selected for colony counting. All results were reported as log₁₀ Colony Forming Unit (CFU)/g as described by ISIRI (2000a; 2008).

Coliform count

Coliform count was determined using 1 ml of prepared dilutions (10⁻¹ to 10⁻³) from milk samples on pour-plates of violet red bile agar (Merck-Darmstadt, Germany) incubated at 30 °C for 24 h. The results were reported as log₁₀ CFU/g. Dishes that contain no more than 150 colonies were selected for colony counting. For the coliform confirmation test, brilliant green bile lactose broth (Merck-Darmstadt, Germany) with Durham tube was used and incubated at 30 °C for 24 h (ISIRI, 2000b).

Escherichia coli detection

Tryptophan broth (Merck-Darmstadt, Germany) was used in the detection of *E. coli* from coliform positive tubes. The inoculated tubes were incubated for 48 h. Conversion of tryptophan into the indole by *E. coli* was recognized by adding Kovacs indicator as well as appearance of pink layer at top of the broth medium (ISIRI, 2000c).

Sensory evaluation

The sensory properties were evaluated through consumer taste panels using nine point hedonic scales. Twenty trained participants between the ages of 18-25 (14 females and 6 males) from staff of Amol University of Modern Special Sciences, Amol, Iran were recruited to take part in consumer taste panel. Consumer acceptance of the experimental products was evaluated using a hedonic scale of 1-9 where 1 corresponds with “dislike extremely” and 9 corresponds “like extremely” in two consumer panels. Sensory scores ≥5 were considered as acceptable.

Statistical analysis

All experiments were repeated in triplicate. Data were statistically analyzed using SPSS software (version 16.0, SPSS Inc., Chicago, IL, USA). Difference between data was significant if the *p* value was found to be <0.05.

Results

Chemical quality and sensory score of pasteurized milk samples at the expiration date is shown in Table 1. The mean value of pH, acidity, and sensory score of the samples were obtained as 6.6, 0.15 g lactic acid/100 ml, and 6.4, respectively. The detail results of microbiological quality assessment of the pasteurized milk samples at the expiry date are presented in Table 2. The mean value of

Journal website: http://www.jfqhc.com
total viable count, coliforms and *E. coli* counts of the samples were 4.11, 0.77, and 0.01 log_{10} CFU/ml, respectively. No significant relationship (*p* >0.05) was found between various studied parameters and different milk brands.

According to limitation levels described in the Iran national standards, the level of pH, acidity, total viable count, coliform, and *E. coli* count exceeded in 30, 20, 40, 20, and 10% of the milk samples, respectively. Also, 50% of the samples had acceptable quality according to the national criteria recommended for pasteurized milk.

Discussion

In the present research, we analyzed microbial and chemical parameters of pasteurized milk distributed in Amol, Northern Iran. In this regards, there are many works carried out previously in Iran and other countries having some similarity and also controversy with each other. For instance, most of milk samples in our study were within acceptable pH range, whereas Aggad et al. (2010) announced that 47.8% pasteurized milk samples in Algeria failed to meet the official standards for pH; conversely, Mirzaalizadeh et al. (2017) showed that pH of all studied pasteurized milk samples in Zanjan, Iran was within standard limits during the whole period of storage. However, being within acceptable pH value does not alone guarantee good quality and freshness of the milk product; because some adulterant actions (such as adding alkaline agents to low-quality milk tanks) which are unfortunately not scarce in Iran, can simply change pH into its normal range. Based on the scientific facts, pH of milk samples is decrease due to producing lactic acid towards the end of shelf-life period; but, in this study we found that in some milk samples, there were no considerable pH changes in spite of their great bacterial counts indicating suspicious of probable adulteration mentioned above. However, more analysis should be carried out to express exact and conclusive statement in this regards.

In the current work, the percentage of lactic acid in 80% samples was in the acceptable range (0.14-0.16%) according to national standard. In Algeria, 74% samples of pasteurized milk were not within acceptable acidity range (Aggad et al., 2010). In another investigation, the acidity of all the pasteurized milk samples from India was higher than the standard limit (Saxena and Rai, 2013).

Table 1: pH value, acidity, and sensory score of pasteurized milk samples distributed in Amol at the expiration date

<table>
<thead>
<tr>
<th>Brand</th>
<th>pH</th>
<th>Acidity (g lactic acid/100 ml)</th>
<th>Sensory score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.75±0.3</td>
<td>0.14±0.01</td>
<td>8±0.3</td>
</tr>
<tr>
<td>2</td>
<td>6.61±0.51</td>
<td>0.14±0.05</td>
<td>7±0.16</td>
</tr>
<tr>
<td>3</td>
<td>6.25±0.14</td>
<td>0.17±0.01</td>
<td>3.5±0.27</td>
</tr>
<tr>
<td>4</td>
<td>6.81±0.45</td>
<td>0.15±0.04</td>
<td>8±0.39</td>
</tr>
<tr>
<td>5</td>
<td>6.68±0.28</td>
<td>0.16±0.01</td>
<td>4.5±0.48</td>
</tr>
<tr>
<td>6</td>
<td>6.70±0.35</td>
<td>0.15±0.03</td>
<td>7±0.13</td>
</tr>
<tr>
<td>7</td>
<td>6.64±0.19</td>
<td>0.15±0.08</td>
<td>8±0.14</td>
</tr>
<tr>
<td>8</td>
<td>6.05±0.54</td>
<td>0.19±0.05</td>
<td>4±0.25</td>
</tr>
<tr>
<td>9</td>
<td>6.73±0.36</td>
<td>0.14±0.02</td>
<td>9±0.48</td>
</tr>
<tr>
<td>10</td>
<td>6.78±0.27</td>
<td>0.16±0.01</td>
<td>4±0.21</td>
</tr>
</tbody>
</table>

Table 2: Total viable count, coliforms and *Escherichia coli* (log_{10} CFU/ml) of pasteurized milk samples distributed in Amol at the expiration date

<table>
<thead>
<tr>
<th>Brand</th>
<th>Total viable count</th>
<th>Coliforms</th>
<th>Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.53±0.20</td>
<td>0.27±0.16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3.15±0.16</td>
<td>0.39±0.08</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5.67±0.22</td>
<td>1.73±0.10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3.35±0.19</td>
<td>0.42±0.13</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4.95±0.15</td>
<td>0.86±0.15</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3.86±0.43</td>
<td>0.60±0.09</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3.71±0.36</td>
<td>0.61±0.12</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>6.72±0.24</td>
<td>2.08±0.11</td>
<td>0.1±0.04</td>
</tr>
<tr>
<td>9</td>
<td>2.16±0.25</td>
<td>0.25±0.10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5.05±0.31</td>
<td>0.55±0.17</td>
<td>0</td>
</tr>
</tbody>
</table>

Journal website: http://www.jfqhc.com
Chatterjee et al. (2006) reported that all of the pasteurized milk samples in India were in good microbial quality due to high quality pasteurization. In another work, Silva et al. (2010) reported presence of coliforms in 57% of pasteurized milk samples in Brazil. In a similar survey conducted in West Azerbaijan province, North-West of Iran, acceptable microbiological quality was reported in about 85% of pasteurized milk samples (Teymori et al., 2014) which is comparable with our findings. In the present study, 10% of the studied milk samples were contaminated with E. coli showing variability comparing with findings stated by some researchers who detected E. coli in 39.5, 9, 0, and 3.9% of milk products marketed in Shahrekord of Iran (Shojaii and Yadollahi, 2008), Sari of Iran (Vahedi et al., 2013), India (Surve et al., 2011), and South Africa (El Zubeir et al., 2008). The results of microbial count obtained in this study were lower than those of reported by Karajibani et al. (2016) and Zolfaghari et al. (2012) who analyzed microbiologically the pasteurized milk and dairy products marketed in Zahedan (Iran) and Qom (Iran), respectively. Lower bacterial counts observed in our samples could be attributed to the climate condition of the area where the samples were collected; Zahedan and Qom are two main hot cities in Iran and so maintenance of cold chain of commercial milk in this condition is more difficult than that of Amol city with mild and relatively cold climate. On the other hand, in spite of pasteurized milk bottles which are always refrigerated, Iranian commercial pasteurized milk pouches may be stored out of the refrigerator (at room temperature) until they are sold highlighting the probable role of climate condition in milk quality. However, some other factors such as the quality of hygienic practices and handling in dairy facilities can affect the milk quality.

It is worth noting that in spite of all above mentioned studies in which the milk samples had obtained within their shelf-life period, we have chosen the milk samples at their expiration time. Logically, in the near of expiration time, the food products are too perishable and susceptible comparing to the earlier periods. In this regards, Jeppu et al. (2015), showed lower bacterial load in fresh milk than that of those were close to expiration date. Thus, although microbial and chemical quality of milk samples in this study were in close with the findings of the other researches, but it is probably assumed that if the milk are obtained within their shelf-life, microbial and chemical quality of milk samples of Amol, Northern Iran will be improved.

Conclusion

In conclusion, storage of milk pouches out of refrigerators in supermarkets of Iran must be strictly avoided in order to improve chemical and quality of this product. Also, proper pasteurization process and reduction of post-pasteurization contamination are the other keys to produce high-quality pasteurized milk.

Conflicts of interest

The authors have declared that no conflict of interest exists.

Acknowledgements

This work has been supported by a research grant (No. T.8.374) from the Amol University of Special Modern Technologies, Amol, Iran. This research was ethically approved by the local institutional review board. We are also grateful to Dr. Andrew MacCabe of the Instituto de Agroquímica y Tecnología de Alimentos (IATA), Valencia, Spain for critical reading of the manuscript.

References

Institute of Standards and Industrial Research of Iran (ISIRI). (2000a). Milk and milk products- Enumeration of colony forming units: colony count technique at 30 °C. National

