Molecular approaches for detection and identification of foodborne pathogens

S. Boughattas 1 (PhD), R. Salehi 2* (PhD)

1. Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, South Korea (Republic of)
2. Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Article type
Review article

Keywords
Polymerase chain reaction
Food analysis
Foodborne diseases

Received: 2013-10-16
Revised: 2013-12-28
Accepted: 2014-01-27

ABSTRACT

Foodborne pathogens comprise microorganisms such as viruses, bacteria and parasites that can be transmitted by food and affect public health worldwide. The most common viruses transmitted via food are hepatitis A virus and Norwalk-like caliciviruses. Also, the most common bacteria involved in foodborne illnesses are Campylobacter jejuni, Clostridium perfringens, Salmonella spp., Escherichia coli 0157:H7, and the most important parasites that can cause these conditions are Giardia duodenalis, Cryptosporidium parvum, Cyclospora cayetanensis, Toxoplasma gondii, Trichinella spiralis, Taenia saginata and/or solium, Entamoeba histolytica, Anisakis spp. and Diphyllobothrium spp. Because of their eventual small number in the sample, their detection and identification is not always easy. On the other hand, conventional methods like cultures are almost labor intensive, time consuming and costly. Recently, molecular techniques have been developed for rapid, sensitive and specific identification. The most common molecular methods are polymerase chain reaction (PCR)-based techniques. In this article, the sensitive and specific molecular tests for routine detection and identification of foodborne pathogens are reviewed.

Introduction

Food safety is one of the most important areas in public health worldwide. Foodborne disease, foodborne infection and/or foodborne poisoning result from infection with viruses, bacteria or parasites (Tauxe, 2002).

Until recently, cultural techniques were the gold standard for detection and identification of microorganisms contaminating food stuffs (Jasson et al., 2010), but conventional methods are labor intensive, time consuming, and costly (Singh et al., 2013). Therefore, it is necessary to apply novel tools to address microbial food safety beyond merely determining the presence of particular contaminating pathogens in food matrixes. Advances in biotechnology have resulted in the development of rapid methods that minimize manipulation, provide results in less time, and reduce cost, such as DNA based assay: polymerase chain reaction (PCR), DNA hybridization, and DNA microarray. In addition, these methods are not only capable of detecting microbial agents in food samples but also provide an opportunity to trace the origin of contamination through precise genotyping of the contaminating pathogen, which is the basis of molecular epidemiology.

PCR is a powerful technique that revolutionized molecular biology by offering applications in the diagnosis of microbial infections and genetic diseases, as well as in detection of pathogens in food (Calvo et al., 2001). Assays based on PCR are now accepted as methods for rapidly confirming the presence or absence of specific pathogens in foods, and PCR based kits are commercially available for detection of specific foodborne pathogens. There are many different protocols based on PCR such as Nested PCR, Hot start PCR, Real time PCR etc. used for foodborne pathogens’ detection and they will be discussed below.

DNA hybridization or gene probe assays consist of detection of DNA or RNA targets using complementary labeled nucleic acid probes. One format is colony hybridization, involving transfer of colonies from the surface of an agar medium onto a solid support, cell lysis, denaturation of the DNA, and linkage to the membrane support, followed by hybridization with a labeled probe (Boileau et al., 1984).
DNA microarray also named DNA chip or biochip is a collection of microscopic DNA spots attached to a solid surface. This method allows running many genetic tests in parallel (Rasooly and Herold, 2008).

Another molecular technique used for detection of foodborne pathogens is Nucleic Acid Sequence Based Amplification (NASBA). NASBA is a method in which RNA is used to be amplified for identification. It has been employed for detection of Campylobacter Spp., L. monocytogenes, Salmonella Spp., Cryptosporidium Spp., and foodborne viruses using 16S rRNA and mRNAs as target molecules (Cook, 2003).

Randomly Amplified Polymorphic DNA (RAPD) is another PCR-based technique (Wolska and Kot, 2013). This method has been used for many foodborne pathogens.

Amplified Fragment length polymorphism (AFLP) is mainly used for molecular typing, detecting restriction fragments of the genome using PCR (Hanza et al., 2013).

There are many more increasing number of molecular analysis methods that are available for characterizing microorganisms in their environments.

Viruses

Viruses are very small microorganisms ranging from 15 to 400 nm comprised of protein and nucleic acid. The most common viruses transmitted via food are hepatitis A virus and Norwalk-like caliciviruses. The other viruses transmitted are genus of Enterovirus, Hepatovirus, Hepatitis E virus, Astrovirus, Rotavirus, Adenoviridae, Arenavirus, Flavivirus, Hantavirus, Aphthovirus and Aichi.

However, foods are rarely tested for viral contamination because culture of the foodborne viruses is very difficult. Moreover, their detecting suffers from some problems as such as standardization, inhibition of enzymes used in RT-PCR, false positive results and etc. (Atmar and Estes, 2001; Koopmans and Duizer, 2004; Lees, 2000). Any infection with gastroenteric viruses is routinely diagnosed by examination of stool samples using electron microscopy, passive particle agglutination tests, or enzyme infected immune-sorbent assays (ELISA); but their sensitivity is not high enough to detect low number of viruses. Meanwhile, molecular techniques such as polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) could increase the chance of viruses’ detection (Bosch et al., 2004; Buesa et al., 2002; Di Pinto et al., 2004; Koopmans et al., 2001). For example, sapoviruses and noroviruses have been detected using RT-PCR (Hutson et al., 2004) and human adenoviruses have been screened by real-time RT nested PCR assay (Myymäki et al., 2004). Also, Arenaviruse has been detected in patients using a nested RT-PCR assay (Park et al., 1997). RT-PCR and real-time PCR methods were reported to detect hepatitis A (Hutson et al., 2004; Lee et al., 2012; Stals et al., 2013).

Molecular biology techniques have been used for detection of the most common foodborne viruses like Norovirus and hepatitis A in shellfish, but none are usually available for other foods virus. The variability of the Norovirus genome hinders the development of a detection kit for routine use. An appropriate method for extraction and molecular detection of human enteric viruses from food was reported by Leggitt and Jaykus (2000).

Bacteria

Bacteria are the most common organisms causing foodborne diseases. The most frequent pathogens involved in this illness are Campylobacter jejuni, Clostridium perfringens, Salmonella spp and Escherichia coli O157:H7. Other common genera of bacteria can bear foodborne diseases: Bacillus cereus, Escherichia coli, Listeria monocytogenes, Shigella spp., Staphylococcus aureus, Staphylococcal enteritis, Streptococcus, Vibrio cholerae, Vibrio para-haemolyticus, Vibrio vulnificus, Yersinia enterocolitica and Yersinia pseudotuberculosis. Less common bacterial agents are also reported such as Brucella spp., Corynebacterium ulcerans, Coxiella burnetii and Plesiomonas shigelloides.

The subtractive hybridization methods have been studied on L. monocytogenes and E. coli (Pradel et al., 2002; Sorsa et al., 2004; Wu and Muriana, 1995; Wu and Muriana, 1999). In most molecular studies, the target gene in bacteria, 16S rRNA was assessed by a variety of gel-based methods including PCR, length heterogeneity PCR (LH-PCR), Restriction Fragment Length Polymorphisms (RFLP), Denaturing Gradient Gel Electrophoresis (DGGE), and Temperature Gradient Gel electrophoresis (TGGE).

Among the molecular techniques, ribotyping using a combination of the restriction enzymes Spel and PstI has been used for Salmonella. Also, typing of Campylobacter has been done with flagellar (flu) gene as a target. Gene Trak kits are available for detection of Salmonella, Listeria, Campylobacter, and E. coli O157:H7 (Fung, 2002).

Different typing and sub-typing methods appear to group strains or isolates at different levels. This would be valuable for E. coli O157:H7 because the potential virulence of the organism depends on serotype. Regardless, typing of foodborne pathogens would be useful for epidemiologic investigations.

Typing and sub-typing may be achieved using PCR for specific gene or gene variants. Each serotype of E. coli presents different manifestations that depend on different sets of virulence genes. Various molecular methods were developed for the identification of specific genes and gene variants (Fukushima et al., 2003; Nishiki et al., 2012). It has been demonstrated that stx genes are appropriate target for sub-typing of E. coli O157:H7 as well as sopE gene for Salmonella sub-typing (Ehrbar et al., 2002; Mirolid et al., 2001).

Repetitive DNA sequences are universally present in the bac-
cerial genome that is used for *Enterobacter* and *Salmonella* (Anderson et al., 2010; Fendri et al., 2013; Healy et al., 2008; Hiett and Seal, 2009; Kilic et al., 2010; Ye et al., 2011). As these elements are widespread in gram-negative bacteria, they can be used for major sub-typing way. This method was used for: the characterization of *V. cholera* strains involved in an epidemic episode in Ukraine (Clark et al., 1998), for sub-typing of *V. parahaemolyticus* strains causing an outbreak associated with oysters on Canada’s west coast (Marshall et al., 1999) and for typing *Salmonella* isolates (Mezal et al., 2013; Van Lith and Aarts, 1994).

Variable number of Tandem Repeat (VNTR) is another sub-typing method used for foodborne pathogens, such as *Salmonella typhimurium* (Lunestad et al., 2013; Prendergast et al., 2011).

Pulsed-field gel electrophoresis (PFGE) is another molecular tool for typing of the foodborne pathogens such as *E. coli* O157:H7 (Barrett et al., 1994) that uses different protocols depending on restriction enzymes, pulse conditions, run times, and size standards.

Another molecular tool for molecular characterization of foodborne bacteria is PCR-RFLP (Marty et al., 2012). In this method, after amplification step, restriction digestion analysis is done for sub-typing gene variants. This method has been used for diagnosis of *C. jejuni* (Steinhauserova et al., 2002) and *C. coli* (Petersen and Newell, 2001).

Multi-locus sequence typing (MLST) is a recent molecular tool for bacterial pathogens typing. Within this method, bacterial isolates are classified directly by approximately seven housekeeping genes (Maiden et al., 2013). This method has been used for *C. jejuni* (Nielsen et al., 2010), *Salmonella enteric* (Achtman et al., 2013) and *E. coli* (Adiri et al., 2003). However, this method was not successful for *E. coli* O157:H7 due to the clonality of this organism (Noller et al., 2003).

Parasites

A parasite is a smaller organism than its host, from which it derives nourishment and protection. Several parasites are involved in foodborne illness. These organisms live and reproduce themselves within the tissues and organs of infected human and animal hosts, and are often excreted in feces. The most reported ones are *Giardia duodenalis*, *Cryptosporidium parvum*, *Cyclospora cayetanensis*, *Toxoplasma gondii*, *Trichinella spiralis*, *Taenia saginatalsolium*, *Entamoeba histolytica*, *Anisakis* spp, and *Diphyllobothrium* spp.

An important point of view is that the detection methods for parasites in food and water are derived from clinical settings. This is a problem because the parasites load in food is different from the load in clinical samples. On the other hand, culture of all parasites is impossible. Therefore, concentration methods for parasites detection in food samples are necessary. For water samples, filtration is used to concentrate large volumes of water for detection of *Cryptosporidium* and *Giardia*. Also, meat mincing and digestion are used for meat-borne parasites such as *Toxoplasma gondii*, *Trichinella spiralis* and *Anisakis simplex*.

The techniques used for parasites detection comprise RFLP analysis for differentiation of *Cyclospora* spp and *Eimeria* spp (Orlandi and Lampel, 2000), PCR using SNP-oligonucleotides, Real-Time PCR and multiplex-nested-PCR for identification of *Cyclospora* spp (Lee et al., 2010; Orlandi et al., 2003).

The mouse and cat bioassays for detection of *T. gondii* tissue cysts needs six to eight weeks and therefore is not suitable for slaughterhouse testing or monitoring of commercial meat products (Gamble and Murrell, 1998; Warnekulasuriya et al., 1998). Another monitoring method is tissue cultureing but it is not sensitive as mouse assay (Lindsay et al., 1991).

The most frequently parasite associated with the consumption of contaminated water is *Giardia duodenalis* for which five outbreaks have been reported in food contamination especially vegetables that are eaten raw by infected or infested food handlers. Concentration techniques such as floatation and microscopy diagnosis have been described for *Giardia* cysts as the same as *Cryptosporidium* oocysts and less for *T. gondii* oocyst (Borchardt et al., 2009; Dumètre and Dardé, 2003; Isaac-Renton et al., 1998; Kourenti et al., 2003; Kourenti and Karanis, 2006; Sotiriadou and Karanis, 2008).

There are works indicating that PCR is a powerful tool for *T. gondii* detection due to the time required for detection of tissue cysts in meat products (Dumètre and Dardé, 2003; Jones and Dubey, 2010). Some molecular based routine techniques that have been used for *T. gondii* are RT-PCR, TaqMan PCR, PCR-enzyme immunoassay oligoprobe, nested PCR and multiplex PCR, (Boughattas et al., 2014; Buchbinder et al., 2003; Burg et al., 1989; Lin et al., 2000; Putignani et al., 2011; Schwab and McDevitt, 2003; Zintl et al., 2009). The usual target genes used in these studies were *ITS-1* rRNA (Jauregui et al., 2001), 18s rRNA (Kupferschmidt et al., 2001; MacPherson and Gajadhur, 1993), a 529bp repeat element (Aigner et al., 2010; Homan et al., 2000; Opsteegh et al., 2010), the single copy P30 gene (Buchbinder et al., 2003; Warnekulasuriya et al., 1998) and *SAG1*-4, *SAG5C*, *GRA4* (Contini et al., 2005; Meisel et al., 1996).

Conclusion

The emerging foodborne pathogens are likely to cause serious health public problems, especially in developing countries where they lead to considerable morbidity and mortality rates. These organisms comprise viruses, bacteria and parasites. Quick, sensitive, specific and easy techniques for detection of these pathogens are needed; some of the appropriate techniques are molecular based methods such as PCR, DNA hybridization and
DNA microarray. These methods have been set up for detection and identification of foodborne pathogens and they might become the new gold standards for the identification of foodborne pathogens.

Conflicts of interest
None declared.

Acknowledgement
The authors gratefully acknowledge Dr. Fouzia Radouani (Institut Pasteur du Maroc, Casablanca, Maroc) for primarily editing of the manuscript.

References

Salmonella enteritidis by repetitive-sequence-based PCR and pulsed-field gel electrophoresis. *Internal Medicine*. 49: 31-36.

