Volume 5, Issue 1 (March 2018)                   J. Food Qual. Hazards Control 2018, 5(1): 11-16 | Back to browse issues page

XML Print


Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria , deyan.stratev@trakia-uni.bg
Abstract:   (850 Views)
Background: Due to its nutrient content, a variety of spoilage microorganisms can grow in bee pollen, especially when handling practices are not appropriate. So, this survey was designed to assess the physicochemical and microbiological properties of bee pollen collected from Bulgaria.
Methods: In June 2014, 13 fresh and 19 dried bee pollen samples were collected from Bulgaria. Water activity (aw), pH, Total Titratable Acidity (TTA), and bacteriological and fungal counts were evaluated. Data were analyzed using Statistica ver. 10.
Results: Mean aw value for fresh and dried bee pollen samples were 0.717 and 0.359, respectively showing significant (p<0.01) difference. The mean pH values of fresh bee pollen samples (4.23) was significantly (p<0.01) lower than that of dried ones (5.21). Also, there is statistically significant difference (p<0.01) between mean TTA value of fresh bee pollen (3.69 g/100 g) and mean TTA value of dried samples (2.09 g/100 g). The mean total viable count in fresh bee pollen samples was 182153.8 Colony Forming Unit (CFU)/g which was significantly (p<0.01) higher than that of dried samples (30352.6 CFU/g); whereas statistical analysis demonstrated that there were no significant differences (p>0.01) among the fresh and dried pollen for Enterobacteriaceae, lactic acid bacteria, and Staphylococcus spp. counts. The fungal colony count in the fresh bee pollen samples varied from 560 to 37000 CFU/g which were significantly (p<0.01) higher than that in the dried ones.
Conclusion: The fresh bee pollen analyzed in this survey had poor microbial quality compared to the dried bee pollen. There is also need to adopt appropriate manufacturing practices to prevent possible contamination by equipment or handling of Bulgarian bee pollen.

DOI:
10.29252/jfqhc.5.1.11
Full-Text [PDF 585 kb]   (300 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/01/04 | Accepted: 18/02/28 | Published: 18/03/16

References
1. Abbas K.A., Saleh A.M., Mohamed A., Lasekan O. (2009). The relationship between water activity and fish spoilage during cold storage: a review. Journal of Food, Agriculture and Environment. 7: 86-90.
2. Adebayo A.O., Oyewole O.B., Obadina A.O., Omemu M.A. (2013). Microbiological safety assessment of fermented cassava flour "lafun" available in Ogun and Oyo states of Nigeria. International Journal of Food Science. http://dx.doi.org/ 10.1155/2013/845324. [DOI:10.1155/2013/845324]
3. Atanassova J., Lazarova M. (2010). Pollen analysis of bee pollen loads from the region of the town of Shumen (NE Bulgaria). Comptes rendus de l'Académie bulgare des Sciences. 63: 370-374.
4. Bastos D.H.M., Barth M.O., Rocha C.I., Cunha I.B.S., Carvalho P.O., Torres E.A.S., Michelan M. (2004). Fatty acid composition and palynological analysis of bee (Apis) pollen loads in the states of Sao Paulo and Minas Gerais, Brazil. Journal of Apicultural Research. 43: 35-39. [DOI:10.1080/00218839.2004.11101107]
5. Beev G., Denev S., Bakalova D. (2013). Zearalenone-producing activity of Fusarium graminearum and Fusarium oxysporum isolated from Bulgarian wheat. Bulgarian Journal of Agricultural Science.19: 255-259.
6. Belhadj H., Harzallah D., Bouamra D., Khennouf S., Dahamna S., Ghadbane M. (2014). Phenotypic and genotypic characterization of some lactic acid bacteria isolated from bee pollen: a preliminary study. Bioscience of Microbiota, Food and Health. 33: 11-23. [DOI:10.12938/bmfh.33.11]
7. Block G., Sinha R., Gridley G. (1997). Collection of dietary-supplement data and implication for analysis. Journal of Agriculture and Food Chemistry. 45: 725-732.
8. Brindza J., Grof J., Bacigalova K., Ferianc P., Toth D. (2010). Pollen microbial colonization and food safety. Acta Chimica Slovaca. 3: 95-102.
9. Campos M.G.R., Bogdanov S., de Almeida-Muradian L.B., Szczesna T., Mancebo Y., Frigerio C., Ferreira F. (2008). Pollen composition and standardisation of analytical methods. Journal of Apicultural Research and Bee World. 47: 156-163. [DOI:10.1080/00218839.2008.11101443]
10. Card S., Pearson M., Clover G.R. (2007). Plant pathogens transmitted by pollen. Australasian Plant Pathology. 36: 455-461. [DOI:10.1071/AP07050]
11. Carpes S.T., Mourão G.B., Masson M.L. (2009). Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Brazilian Journal of Food Technology. 12: 220-229. [DOI:10.4260/BJFT2009800900016]
12. Feas X., Vazquez-Tato M.P., Estevinho L., Seijas J.A., Iglesias A. (2012). Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules. 17: 8359-8377. [DOI:10.3390/molecules17078359]
13. Flores J., Gutiérrez I., Espejo R. (2005). The role of pollen in chalkbrood disease in Apis mellifera: transmission and predisposing conditions. Mycologia. 97: 1171-1176. [DOI:10.1080/15572536.2006.11832727]
14. Gilliam M. (1979). Microbiology of pollen and bee bread: the genus Bacillus. Apidologie. 10: 269-274. [DOI:10.1051/apido:19790304]
15. Gonzalez G., Hinojo M.J., Mateo R., Medina A., Jimenez M. (2005). Occurrence of mycotoxin producing fungi in bee pollen. International Journal of Food Microbiology. 105: 1-9. [DOI:10.1016/j.ijfoodmicro.2005.05.001]
16. Hani B., Dalila B., Saliha D., Daoud H., Mouloud G., Seddik K. (2012). Microbiological sanitary aspects of pollen. Advances in Environmental Biology. 6: 1415-1420.
17. Isidorov V.A., Isidorova A.G., Sczczepaniak L., Czyżewska U. (2009). Gas chromatographic–mass spectrometric investigation of the chemical composition of beebread. Food Chemistry. 115: 1056-1063. [DOI:10.1016/j.foodchem.2008.12.025]
18. Jay J.M., Loessner M.J., Golden D.A. (2005). Modern food microbiology. 7th edition. Springer Science, New York.
19. Kacaniova M., Juracek M., Chlebo R., Knazovicka V., Kadasi-Horakova M., Kunova S., Lejkova J., Hascik P., Marecek J., Simko M. (2011). Mycobiota and mycotoxins in bee pollen collected from different areas of Slovakia. Journal of Environmental Science and Health, Part B. 46: 623-629. [DOI:10.1080/03601234.2011.589322]
20. Lacey M.E., West J.S. (2007). The air spora: a manual for catching and identifying airborne biological particles. Springer Science and Business Media, Netherlands.
21. Leja M., Mareczek A., Wyżgolik G., Klepacz-Baniak J., Czekońska, K. (2007). Antioxidative properties of bee pollen in selected plant species. Food Chemistry. 100: 237-240. [DOI:10.1016/j.foodchem.2005.09.047]
22. Mathlouthi M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control. 12: 409-417. [DOI:10.1016/S0956-7135(01)00032-9]
23. Medina A., Gonzalez G., Saez M.R., Jimenez M. (2004). Bee pollen, a substrate that stimulates ochratoxin A productionby Aspergillus ochraceus Wilh. Systematic and Applied Microbiology. 27: 261- 267. [DOI:10.1078/072320204322881880]
24. Nardoni S., D'Ascenzi C., Rocchigiani G., Moretti V., Mancianti F. (2016). Occurrence of moulds from bee pollen in central Italy-a preliminary study. Annals of Agricultural and Environmental Medicine. 23: 103-105. [DOI:10.5604/12321966.1196862]
25. Njobeh P.B., Dutton M.F., Koch S.H., Chuturgoon A., Stoev S., Seifert K. (2009). Contamination with storage fungi of human food from Cameroon. International Journal of Food Microbiology. 135: 193-198. [DOI:10.1016/j.ijfoodmicro.2009.08.001]
26. Obadina A.O., Oyewole O.B., Awojobi T.M. (2008). Effect of steeping time of milled grains on the quality of Kunnu-Zaki (A Nigerian beverage). African Journal of Food Science. 2: 33-36.
27. Petrović T., Nedić N., Paunović D., Rajić J., Matović K., Radulović Z., Krnjaja V. (2014). Natural mycobiota and aflatoxin B1 presence in bee pollen collected in Serbia. Biotechnology in Animal Husbandry. 30: 731-741. [DOI:10.2298/BAH1404731P]
28. Pitt J.I., Hocking A.D. (2009). Fungi and food spoilage. Springer, USA. [DOI:10.1007/978-0-387-92207-2]
29. Rahman M.S. (2010). Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. Journal of Food Engineering. 99: 402-416. [DOI:10.1016/j.jfoodeng.2009.07.011]
30. Sanders W.E., Sanders C.C. (1997). Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clinical Microbiology Reviews. 10: 220-241.
31. Serra B.J., Escola J.R. (1997). Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. Journal of Agriculture and Food Chemistry. 45: 725-732. [DOI:10.1021/jf960265q]
32. Shevtsova T., Kacaniova M., Garkava K., Brindza J., Petrova J. (2014). Contamination of Betula verrucosa ehrh. pollen by microorganisms, mycotoxins and heavy metals. Journal of Microbioogy, Biotechnology and Food Sciences. 3: 509-513.
33. Xu K., Wang A., Brown S. (2012). Genetic characterization of the Ma locus with pH and titratable acidity in apple. Molecular Breeding. 30: 899-912. [DOI:10.1007/s11032-011-9674-7]
34. Zavisic G., Petricevic S., Radulovic Z., Begovic J., Golic N., Topisirovic L., Strahinic I. (2012). Probiotic features of two oral Lactobacillus isolates. Brazilian Journal of Microbiology. 43: 1517-8382. [DOI:10.1590/S1517-83822012000100050]