Volume 5, Issue 3 (September 2018)                   J. Food Qual. Hazards Control 2018, 5(3): 94-101 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zifruddin A, Thong K. Potential Use of DNA Aptamer-Magnetic Bead Separation-PCR Assay for Salmonella Detection in Food . J. Food Qual. Hazards Control. 2018; 5 (3) :94-101
URL: http://jfqhc.ssu.ac.ir/article-1-456-en.html
Institute of Biological Sciences, Faculty of Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia , thongkl@um.edu.my
Abstract:   (96 Views)
Background: Salmonella is one of the most common food-borne pathogens that can cause illness. In this study, the sensitivity and the specificity of Aptamer-Magnetic bead Separation-Polymerase Chain Reaction (AMS-PCR) method were determined for Salmonella spp. detection.
Methods: Different concentrations of Salmonella enterica were mixed with streptavidin-magnetic beads coated with biotinylated DNA aptamer. The bound bacteria were eluted and tested with PCR targeting the invA gene of Salmonella. Ten different serovars of Salmonella enterica and four non-Salmonella were tested to determine the specificity of the DNA aptamer. For field application, 14 different food samples were tested and compared with the culture method.
Results: The limit of detection of AMS-PCR method was 102 CFU/ml which was 10 times more sensitive than conventional PCR without AMS (103 CFU/ml). The AMS-PCR assay showed high specificity as it detected ten different serovars of Salmonella enterica with no cross-reactivity with other food-borne pathogens. AMS-PCR reduced the analytical duration from 6 to 7 h instead of 4 days by the culture method.
Conclusion: In comparison with the culture method, AMS helped to improve the upstream sample preparation in reducing the pre-enrichment and enrichment times. So, it seems that combining AMS with PCR is cost-effective and time-saving. In addition, it is highly specific for monitoring of Salmonella spp. in food chain.


DOI: 10.29252/jfqhc.5.3.94
Full-Text [PDF 653 kb]   (39 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/04/27 | Accepted: 18/07/26 | Published: 18/09/24

References
1. Amaya-González S., de-los-Santos-Alvarez N., Miranda-Ordieres A.J., Lobo-Casta-ón M.J. (2013). Aptamer-based analysis: a promising alternative for food safety control. Sensors. 13: 16292-16311. [DOI:10.3390/s131216292]
2. Brehm-Stecher B., Young C., Jaykus L.A., Tortorello M.L. (2009). Sample preparation: the forgotten beginning. Journal of Food Protection. 72: 1774-1789. [DOI:10.4315/0362-028X-72.8.1774]
3. Carrasco E., Morales-Rueda A., García-Gimeno R.M. (2012). Cross-contamination and recontamination by Salmonella in foods: a review. Food Research International. 45: 545-556. [DOI:10.1016/j.foodres.2011.11.004]
4. D'Aoust J.Y. (1985). Brief reports: infective dose of Salmonella Typhimurium in cheddar cheese. American Journal of Epidemology. 122: 717-720. [DOI:10.1093/oxfordjournals.aje.a114151]
5. Ellington A.D., Szostak J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature. 346: 818-822. [DOI:10.1038/346818a0]
6. Famulok M., Hartig J.S., Mayer G. (2007). Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chemical Reviews. 107: 3715-3743. [DOI:10.1021/cr0306743]
7. Famulok M., Mayer G. (2011). Aptamer modules as sensors and detectors. Accounts of Chemical Research. 44: 1349-1358. [DOI:10.1021/ar2000293]
8. Goulter R.M., Gentle I.R., Dykes G.A. (2009). Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example. Letters in Applied Microbiology. 49: 1-7. [DOI:10.1111/j.1472-765X.2009.02591.x]
9. Hara-Kudo Y., Takatori K. (2011). Contamination level and ingestion dose of foodborne pathogens associated with infections. Epidemiology and Infection. 139: 1505-1510. [DOI:10.1017/S095026881000292X]
10. Jayasena S.D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry. 45: 1628-1650.
11. Jenïkovâ G., Pazlarovâ J., Demnerovâ K. (2000). Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. International Microbiology. 3: 225-229.
12. Joshi R., Janagama H., Dwivedi H.P., Senthil-Kumar T.M.A., Jaykus L.A., Schefers J., Sreevatsan S. (2009). Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and Cellular Probes. 23: 20-28. [DOI:10.1016/j.mcp.2008.10.006]
13. Kunwar R., Singh H., Mangla V., Hiremath R. (2013). Outbreak investigation: Salmonella food poisoning. Medical Journal Armed Forces India. 69: 388-391. [DOI:10.1016/j.mjafi.2013.01.005]
14. Lee K.M., Runyon M., Herrman T.J., Phillips R., Hsieh J. (2015). Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control. 47: 264-276. [DOI:10.1016/j.foodcont.2014.07.011]
15. Ma X., Jiang Y., Jia F., Yu Y., Chen J., Wang Z. (2014). An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods. 98: 94-98. [DOI:10.1016/j.mimet.2014.01.003]
16. Mukhopadhyay S., Ramaswamy R. (2012). Application of emerging technologies to control Salmonella in foods: a review. Food Research International. 45: 666-677. [DOI:10.1016/j.foodres.2011.05.016]
17. Parikh R., Mathai A., Parikh S., Chandra Sekhar G., Thomas R. (2008). Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology. 56: 45-50. [DOI:10.4103/0301-4738.37595]
18. Ricke S.C., Rivera-Calo J., Kaldhone P. (2015). Salmonella control in food production: current issues and perspectives in the United States. In: Ricke S.C., Donaldson J.R., Kaldhone P. (Editors). Food safety: emerging isues, technologies and systems. Academic Press, London. pp: 107-133. [DOI:10.1016/B978-0-12-800245-2.00007-1]
19. Robinson R.K. (2014). Encyclopedia of food microbiology. Academic press, UK.
20. Romero M.R., D'Agostino M., Arias A.P., Robles S., Casado C.F., Iturbe L.O., Lerma O.G., Andreou M., Cook N. (2016). An immunomagnetic separation/loop-mediated isothermal amplification method for rapid direct detection of thermotolerant Campylobacter spp. during poultry production. Journal of Applied Microbiology. 120: 469-477. [DOI:10.1111/jam.13008]
21. Song K.M., Lee S., Ban C. (2012). Aptamers and their biological applications. Sensors. 12: 612-631. [DOI:10.3390/s120100612]
22. Stevens K.A., Jaykus L.A. (2004). Bacterial separation and concentration from complex sample matrices: a review. Critical Reviews in Microbiology. 30: 7-24. [DOI:10.1080/10408410490266410]
23. Suh S.H., Dwivedi H.P., Jaykus L.A. (2014). Development and evaluation of aptamer magnetic capture assay in conjunction with real-time PCR for detection of Campylobacter jejuni. LWT-Food Science and Technology. 56: 256-260. [DOI:10.1016/j.lwt.2013.12.012]
24. Suh S.H., Jaykus L.A. (2013). Nucleic acid aptamers for capture and detection of Listeria spp. Journal of Biotechnology. 167: 454-461. [DOI:10.1016/j.jbiotec.2013.07.027]
25. Suh S.H., Jaykus L.A., Brehm-Stecher B. (2013). Advances in separation and concentration of microorganisms from food samples. In: Sofos J. (Editor). Advances in microbial food safety. Woodhead Publishing, Cambridge, UK. pp: 173-192. [DOI:10.1533/9780857098740.3.173]
26. Tuerk C., Gold L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249: 505-510. [DOI:10.1126/science.2200121]
27. Ukuku D.O., Fett W.F. (2002). Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. Journal of Food Protection. 65: 1093-1099. [DOI:10.4315/0362-028X-65.7.1093]
28. Wang Z., Cai R., Yuan Y., Niu C., Hu Z., Yue T. (2014). An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products. International Journal of Food Microbiology. 175: 30-35. [DOI:10.1016/j.ijfoodmicro.2014.01.015]
29. Wang Z., Wang D., Chen J., Sela D.A., Nugen S.R. (2016). Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli. Analyst. 141: 1009-1016. [DOI:10.1039/C5AN01769F]
30. Wang Z., Wang J., Yue T., Yuan Y., Cai R., Niu C. (2013). Immunomagnetic separation combined with polymerase chain reaction for the detection of Alicyclobacillus acidoterrestris in apple juice. PLoS ONE. 8: e82376. [DOI:10.1371/journal.pone.0082376]
31. Xiong Q., Cui X., Saini J.K., Liu D., Shan S., Jin Y., Lai W. (2014). Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control. 37: 41-45. [DOI:10.1016/j.foodcont.2013.08.033]
32. Yuan J., Tao Z., Yu Y., Ma X., Xia Y., Wang L., Wang Z. (2014). A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control. 37: 188-192. [DOI:10.1016/j.foodcont.2013.09.046]
33. Zhao X., Lin C.W., Wang J., Oh D.H. (2014). Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology. 24: 297-312. [DOI:10.4014/jmb.1310.10013]

Add your comments about this article : Your username or Email:
CAPTCHA code

© 2018 All Rights Reserved | Journal of food quality and hazards control

Designed & Developed by : Yektaweb