Volume 5, Issue 4 (December 2018)                   J. Food Qual. Hazards Control 2018, 5(4): 146-153 | Back to browse issues page


XML Print


Food Control Department, Faculty of Veterinary Medicine, Zagazig University 44519, Egypt , wagehdarwish@zu.edu.eg
Abstract:   (4707 Views)
Background: Shiga toxin-producing Escherichia coli (STEC) are group of E. coli causing bloody diarrhea. The goal of this survey was to determine the prevalence of multidrug resistant shiga toxin-producing E. coli in cattle meat and its contact surfaces.
Methods: Swab samples (n=120) were randomly collected from meat and contact surface of butchery shops in Sharkia province, Egypt. Prevalence of E. coli was examined using culture, biochemical, and serological methods. Identification of shiga toxin-encoding genes (stx1 and stx2) in the E. coli serotypes was done using multiplex polymerase chain reaction. Screening of multidrug resistance profile was done using the disk-diffusion method. Data were analyzed using JMP statistical package, SAS Institute Inc., Cary, NC.
Results: The prevalence rates of E. coli in the chuck, round, masseter muscles, cutting-boards, walls, and floors were 20, 10, 30, 50, 40, and 60%, respectively. Among the isolates, E. coli O111:H4 and E. coli O26:H11 harbored the two mentioned genes. E. coli O86 and E. coli O114:H21 harbored only stx1; while E. coli O55:H7 encoded only stx2. Just E. coli O124 had no express of stx1 and stx2. The isolated E. coli serovars showed a multidrug resistance profile.
Conclusion: Considering the results of this study, strict hygienic procedures should be followed to avoid or reduce carcass cross-contamination. In addition, proper handling and efficient cooking of meat are highly recommended by consumers to reduce the risk of human exposure to STEC.

DOI: 10.29252/jfqhc.5.4.6

 
Full-Text [PDF 557 kb]   (1128 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/07/30 | Accepted: 18/10/08 | Published: 18/12/28

References
1. Abuelhassan N.N., Mutalib S.A., Gimba F.I., Yusoff W.M. (2016). Molecular characterization and phylogeny of shiga toxin-producing E. coli (STEC) from imported beef meat in Malaysia. Environmental Science and Pollution Research. 23: 17553-17562. [DOI:10.1007/s11356-016-6954-0] [PMID]
2. Algabry I.M.I., Ahmed A.A., Ibrahim H.A.A., Samaha I. (2012). Hygiene of butcher shop in Alexandria. Alexandria Journal of Veterinary Sciences. 37: 23-31.
3. American Public Health Association (APHA). (2001). Compendium of methods for the microbiological examination of food. 4th edition. American Public Health Association, Washington, D.C.
4. Borch E., Arinder P. (2002). Bacteriological safety issues in red meat and ready to-eat meat products, as well as control measures. Meat Science. 62: 381-390. [DOI:10.1016/S0309-1740(02)00125-0]
5. Centers for Disease Control and Prevention (CDC). (2013). Surveillance for foodborne disease outbreaks-United States, 2009-2010. Morbidity and Mortality Weekly Report. 62: 41-47. [PMID] [PMCID]
6. Centers for Disease Control and Prevention (CDC). (2014). Multistate outbreak of shiga toxin-producing Escherichia coli O157:H7 infections linked to ground beef (Final update). http: // www.cdc.gov/ ecoli/ 2014/ O157H7-05-14/ index.html. Accessed 3 March 2018.
7. Centers for Disease Control and Prevention (CDC). (2018). Outbreak of E. coli infections linked to ground beef. https:// www.cdc.gov/ecoli/2018/o26-09-18/index.html. Accessed 3 March 2018.
8. Darwish W.S., Bayomi R.M.E., El-Moaty A.M.A., Gad T.M. (2016). Mould contamination and aflatoxin residues in frozen chicken meat-cuts and giblets. Japanese Journal of Veterinary Research. 64: S167-S171.
9. Darwish W.S., Eldaly E.A., El-Abbasy M.T., Ikenaka Y., Nakayama S., Ishizuka M. (2013). Antibiotic residues in food: the African scenario. Japanese Journal of Veterinary Research. 61: S13-S22. [PMID]
10. Darwish W.S., Eldin W.F.S., Eldesoky K.I. (2015). Prevalence, molecular characterization and antibiotic susceptibility of Escherichia coli isolated from duck meat and giblets. Journal of Food Safety. 35: 410-415. [DOI:10.1111/jfs.12189]
11. Davis G.S., Waits K., Nordstrom L., Grande H., Weaver B., Papp K., Horwinski J., Koch B., Hungate B.A., Liu C.M., Price L.B. (2018). Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiology. 18: 174. [DOI:10.1186/s12866-018-1322-5] [PMID] [PMCID]
12. Eibach D., Dekker D., Gyau Boahen K., Wiafe Akenten C., Sarpong N., Belmar Campos C., Berneking L., Aepfelbacher M., Krumkamp R., Owusu-Dabo E., May J. (2018). Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Veterinary Microbiology. 217: 7-12. [DOI:10.1016/j.vetmic.2018.02.023] [PMID]
13. European Food Safety Authority (EFSA). (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. The European Food Safety Authority Journal. 10: 2740.
14. Frank C., Werber D., Cramer J.P., Askar M., Faber M., an der Heiden M., Bernard H., Fruth A., Prager R., Spode A., Wadl M. (2011). Epidemic profile of shiga-toxin–producing Escherichia coli O104: H4 outbreak in Germany. New England Journal of Medicine. 365: 1771-1780. [DOI:10.1056/NEJMoa1106483] [PMID]
15. Gannon V.P.J., King R.K., Kim J.Y., Golsteyn Thomas E.J. (1992). Rapid and sensitive method for detection of shiga-like toxin-producing Escherichia coli in ground beef using the polymerase chain reaction. Applied and Environmental Microbiology. 58: 3809-3815. [PMID] [PMCID]
16. Gao A., Fishcher-Jenssen J., Cooper C., Li H., Li J., Chen S., Martos P. (2018). Evaluation of a multiplex PCR for detection of the top seven shiga toxin-producing Escherichia coli serogroups in ready-to-eat meats, fruits, and vegetables. Journal of AOAC International. 101: 1828-1832. [DOI:10.5740/jaoacint.18-0010] [PMID]
17. Hussain A., Shaik S., Ranjan A., Nandanwar N., Tiwari S.K., Majid M., Baddam R., Qureshi I.A., Semmler T., Wieler L.H., Islam M.A., Chakravortty D., Ahmed N. (2017). Risk of transmission of antimicrobial resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Frontiers in Microbiology. 8: 2120. [DOI:10.3389/fmicb.2017.02120] [PMID] [PMCID]
18. International Commission of Microbiological Specification for Foods (ICMSF). (1996). Microorganisms in food. 1-Their significance and methods of enumeration. 3rd edition. University of Toronto, Canada.
19. Kim H.J., Oh T., Baek S.Y. (2018). Multidrug resistance, biofilm formation, and virulence of Escherichia coli isolates from commercial meat and vegetable products. Foodborne Pathogens and Disease. doi: 10.1089/fpd.2018.2448. [DOI:10.1089/fpd.2018.2448]
20. Kok T., Worswich D., Gowans E. (1996). Some serological techniques for microbial and viral infections. In: Collee J., Fraser A., Marmion, B., Simmons A. (Editors). Practical medical microbiology. 14th edition. Edinburgh, Churchill livingstone, UK.
21. Kools S.A.E., Moltmann J.F., Knacker T. (2008). Estimating the use of veterinary medicines in the European ::::union::::. Regulatory Toxicology and Pharmacology. 50: 59-65. [DOI:10.1016/j.yrtph.2007.06.003] [PMID]
22. Mateus-Vargas R.H., Atanassova V., Reich F., Klein G. (2017). Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat. Food Microbiology. 63: 164-169. [DOI:10.1016/j.fm.2016.11.013] [PMID]
23. McEvoy J.M., Doherty A.M., Sheridan J.J., Thomson‐Carter F.M., Garvey P., McGuire L., Blair I.S., McDowell D.A. (2003). The prevalence and spread of Escherichia coli O157: H7 at a commercial beef abattoir. Journal of Applied Microbiology. 95: 256-266. [DOI:10.1046/j.1365-2672.2003.01981.x] [PMID]
24. Mellor G.E., Fegan N., Duffy L.L., McMillan K.E., Jordan D., Barlow R.S. (2016). National survey of shiga toxin-producing Escherichia coli serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian beef cattle feces. Journal of Food Protection. 79: 1868-1874. [DOI:10.4315/0362-028X.JFP-15-507] [PMID]
25. Ruiz-Roldán L., Martínez-Puchol S., Gomes C., Palma N., Riveros M., Ocampo K., Durand D., Ochoa T.J., Ruiz J., Pons M.J. (2018). Presence of multidrug resistant Enterobacteriaceae and Escherichia coli in meat purchased in traditional markets of Lima. Revista Peruana de Medicina Experimental y Salud Pública. 35: 425-432.
26. Trabulsi L.R., Keller R., Tardelli Gomes T.A. (2002). Typical and atypical enteropathogenic Escherichia coli. Emerging Infectious Diseases. 8: 508-513. [DOI:10.3201/eid0805.010385] [PMID] [PMCID]
27. Vanderlinde P.B., Shay B., Murray J. (1999). Microbiological status of Australian sheep meat. Journal of Food Protection. 62: 380-385. [DOI:10.4315/0362-028X-62.4.380] [PMID]
28. Xia X., Meng J., McDermott P.F., Ayers S., Blickenstaff K., Tran T.T., Abbott J., Zheng J., Zhao S. (2010). Presence and characterization of shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats. Applied Environmental Microbiology. 76: 1709-1717. [DOI:10.1128/AEM.01968-09] [PMID] [PMCID]
29. Yamaguchi T., Kawahara R., Harada K., Teruya S., Nakayama T., Motooka D., Nakamura S., Nguyen P.D., Kumeda Y., Van Dang C., Hirata K., Yamamoto Y. (2018). The presence of colistin resistance gene mcr-1 and -3 in ESBL producing Escherichia coli isolated from food in Ho Chi Minh City, Vietnam. FEMS Microbiology Letters. 365. doi: 10.1093/femsle/fny100. [DOI:10.1093/femsle/fny100]
30. Zhou Z., Li X., Liu B., Beutin L., Xu J., Ren Y., Feng L., Lan R., Reeves P.R., Wang L. (2010). Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One. 5: e8700. [DOI:10.1371/journal.pone.0008700] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.