Volume 8, Issue 2 (June 2021)                   J. Food Qual. Hazards Control 2021, 8(2): 57-65 | Back to browse issues page


XML Print


Centro de Investigación en Alimentación y Desarrollo AC. Carretera Gustavo Enrique Astiazarán Rosas, Number 46. Col. La Victoria, CP. 83304, Hermosillo, Sonora, México , lquihui@ciad.mx
Abstract:   (1082 Views)
Background: Fruits and vegetables are potential vehicle of transmission of intestinal parasites. The main aim of this study was to determine prevalence of intestinal parasitic contamination in fruits and vegetables sampled from Caborca region, Northwest Mexico.
Methods: A total of 400 fruit and vegetable samples were collected from unregulated open-air markets and closed (i.e., regulated) markets in Caborca region of Northwest Mexico; including melon, peach, asparagus, and grapes. Faust, Kinyoun, and Enzyme-Linked Immunosorbent Assay (ELISA) techniques were used to detect and identify the genus and species of all parasites found in the examined samples. Data were statistically analyzed using STATA/SE (version 12.0).
Results: An overall prevalence (45%) of parasitic contamination was found in the 400 fruit and vegetable samples. Endolimax nana (27.5%) and Entamoeba coli (17.5%) were the most common nonpathogenic parasites, while the most prevalent parasitic pathogens were Cryptosporidium spp. (11.7%), Cyclospora spp., (11.0%), and Blastocystis hominis (9.2%). Asparagus (31%) and grapes (38.9%) had significantly (p<0.05) higher percentages of overall and multiple parasitic contamination than melon (10.6%) and peaches (19.4%). The fresh produce from the open-air markets had significantly (p<0.05) higher overall parasitic contamination (53.5%) than those of the closed establishments (36.5%). 
Conclusion: The parasitic contamination in the fresh produce sold in the Northwest region of Mexico is a serious public health concern.

DOI: 10.18502/jfqhc.8.2.6469
Full-Text [PDF 380 kb]   (739 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/01/14 | Accepted: 21/04/23 | Published: 21/06/17

References
1. Abou El-Naga I.F., Gaafar M.R. (2014). Auramine-phenol vs. modified Kinyoun's acid-fast stains for detection of coccidia parasites. Laboratory Medicine. 45: 65-73. [DOI: 10.1309/ LMS0WN7K7UKZCPMI] [DOI:10.1309/LMS0WN7K7UKZCPMI] [PMID]
2. Alemu G., Nega M., Alemu M. (2020). Parasitic contamination of fruits and vegetables collected from local markets of Bahir Dar city, Northwest Ethiopia. Research and Reports in Tropical Medicine. 11: 17-25. [DOI: 10.2147/RRTM.S244737] [DOI:10.2147/RRTM.S244737] [PMID] [PMCID]
3. Bahreh M., Hajimohammadi B., Eslami G. (2021). Toxoplasma gondii in sheep and goats from Central Iran. BMC Research Notes. 14: 46. [DOI: 10.1186/s13104-021-05465-3] [DOI:10.1186/s13104-021-05465-3] [PMID] [PMCID]
4. Canales E., Andrango G., Williams A. (2019). Mexico's agricultural sector: production potential and implications for trade. Choices. 34: 1-12.
5. Centers for Disease Control and Prevention (CDC). (2020a). Cyclosporiasis outbreak investigations-United States, 2020. URL: https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/ 2020/. Accessed: 2 January 2021.
6. Centers for Disease Control and Prevention (CDC). (2020b). Parasitic-nonpathogenic (harmless) intestinal protozoa-frequently asked questions (FAQs). URL: https://www.cdc.gov/parasites/ nonpathprotozoa/faqs.html. Accessed: 2 January 2021.
7. Chejfec G. (1999). Markell and Voge's medical parasitology. Archives of Pathology and Laboratory Medicine. 123: 977. [DOI:10.5858/1999-123-977a-MVMP]
8. Deksne G., Lalle M., Elwin K., Schares G., Troell K. (2020). Why do we need training?-A "Training school on molecular methods used for foodborne parasite diagnostics in different matrices" is a example of knowledge transfer to foster research quality in EU. Experimental Parasitology. 211: 107863. [DOI: 10.1016/j.exppara.2020.107863] [DOI:10.1016/j.exppara.2020.107863] [PMID]
9. Duedu K.O., Yarnie E.A., Tetteh-Quarcoo P.B., Attah S.K., Donkor E.S., Ayeh-Kumi P.F. (2014). A comparative survey of the prevalence of human parasites found in fresh vegetables sold in supermarkets and open-aired markets in Accra, Ghana. BMC Research Notes. 7: 836. [DOI: 10.1186/1756-0500-7-836] [DOI:10.1186/1756-0500-7-836] [PMID] [PMCID]
10. El Bakri A., Hussein N.M., Ibrahim Z.A., Hasan H., Abuodeh R. (2020). Intestinal parasite detection in assorted vegetables in the United Arab Emirates. Oman Medical Journal. 35: 128. [DOI: 10.5001/omj.2020.46] [DOI:10.5001/omj.2020.46] [PMID] [PMCID]
11. Eslami G., Khalatbari-Limaki S., Ehrampoush M.H., Gholamrezaei M., Hajimohammadi B., Oryan A. (2017). Comparison of three different DNA extraction methods for Linguatula serrata as a food born pathogen. Iranian Journal of Parasitology. 12: 236-242.
12. Ezatpour B., Chegeni A.S., Abdollahpour F., Aazami M., Alirezaei M. (2013). Prevalence of parasitic contamination of raw vegetables in Khorramabad, Iran. Food Control. 34: 92-95. [DOI: 10.1016/j.foodcont.2013.03.034] [DOI:10.1016/j.foodcont.2013.03.034]
13. Garcia L.S., Arrowood M., Kokoskin E., Paltridge G.P., Pillai D.R., Procop G.W., Ryan N., Shimizu R.Y., Visvesvara G. (2018). Practical guidance for clinical microbiology laboratories: laboratory diagnosis of parasites from the gastrointestinal tract. Clinical Microbiology Reviews. 31. [DOI: 10.1128/ CMR.00025-17] [DOI:10.1128/CMR.00025-17] [PMID] [PMCID]
14. Ismail Y. (2016). Prevalence of parasitic contamination in salad vegetables collected from supermarkets and street vendors in Amman and Baqa'a-Jordan. Polish Journal of Microbiology. 65: 201-207. [DOI: 10.5604/17331331.1204480] [DOI:10.5604/17331331.1204480]
15. Li J., Wang Z., Karim M.R., Zhang L. (2020). Detection of human intestinal protozoan parasites in vegetables and fruits: a review. Parasites and Vectors. 13: 380. [DOI: 10.1186/ s13071-020-04255-3] [DOI:10.1186/s13071-020-04255-3] [PMID] [PMCID]
16. Mohemeed A.A., Alrawi Z.A.A., Mahdi N.K., Salih T.A. (2021). Immunological and molecular investigation of the level of parasite contamination of some vegetables sold in the local markets of Ramadi City-Iraq. Annals of the Romanian Society for Cell Biology. 25: 5964-5973.
17. Morales-Figueroa G.G., Castro-García M., Esparza-Romero J., López-Mata M.A., Quihui-Cota L. (2019). Human intestinal protozoa in fresh asparagus from different types of markets in northwest Mexico. Tropical Biomedicine. 36: 718-725.
18. Punsawad C., Phasuk N., Thongtup K., Nagavirochana S., Viriyavejakul P. (2019). Prevalence of parasitic contamination of raw vegetables in Nakhon Si Thammarat province, southern Thailand. BMC Public Health. 19: 34. [DOI: 10.1186/s12889-018-6358-9] [DOI:10.1186/s12889-018-6358-9] [PMID] [PMCID]
19. Said D.E.S. (2012). Detection of parasites in commonly consumed raw vegetables. Alexandria Journal of Medicine. 48: 345-352. [DOI: 10.1016/j.ajme.2012.05.005] [DOI:10.1016/j.ajme.2012.05.005]
20. Sturrock S.L., Yiannakoulias N., Sanchez A.L. (2017). The geography and scale of soil-transmitted helminth infections. Current Tropical Medicine Reports. 4: 245-255. [DOI: 10.1007/ s40475-017-0126-2] [DOI:10.1007/s40475-017-0126-2]
21. Tefera T., Biruksew A., Mekonnen Z., Eshetu T. (2014). Parasitic contamination of fruits and vegetables collected from selected local markets of Jimma Town, Southwest Ethiopia. International Scholary Research Notices. 2014: 382715. [DOI: 10.1155/2014/382715] [DOI:10.1155/2014/382715] [PMID] [PMCID]
22. Zolfaghari Emameh R., Purmonen S., Sukura A., Parkkila S. (2018). Surveillance and diagnosis of zoonotic foodborne parasites. Food Science and Nutrition. 6: 3-17. [DOI: 10.1002/fsn3.530] [DOI:10.1002/fsn3.530] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.