Volume 8, Issue 4 (December 2021)                   J. Food Qual. Hazards Control 2021, 8(4): 141-151 | Back to browse issues page


XML Print


Laboratory of Biology and Health. Department of Biology. Faculty of Sciences. Abdelmalek Essaadi University, Tetouan, Morocco , issaoui.kaoutar@hotmail.fr
Abstract:   (689 Views)
Background: Table olives are nutritionally a complete food and considered as one of the oldest fermented products. This study aimed to evaluate the effect of Lactiplantibacillus plantarum 11 as a starter culture on the fermentation of table olives at two incubation temperatures 22 and 30 °C and different salt concentrations (0, 4, 8, and 12% m/v) of sodium chloride (NaCl).
Methods: The fermentation of table olives was carried out according to the Spanish style. L. plantarum 11 was inoculated as a starter culture (106 Colony Forming Unit (CFU)/ml), and Listeria monocytogenes CECT 4032 was used as an indicator strain. Under the same experimental conditions, the fermentation of olives without the inoculation of starter culture was used as a control. Then, biochemical and microbiological quality of each experimental batch was tested.
Results: Unlike the incubation temperature of 22 °C, the pH values ​​obtained in salted batches and incubated at 30 °C were all below the marketing limits for table olives. At the end of the process, the maximum load of yeasts and molds (>5 log CFU/ml) was recorded in the batches incubated at 22 °C. At 22 °C, Listeria was absent in inoculated fermenters at a concentration greater than or equal to 8% (w/v) of NaCl. However, at 30 °C, Listeria was not detected in treatment groups and in the control group with 12% NaCl. 
Conclusion: L. plantarum 11 could be potentially considered as a probiotic starter culture during the fermentation of black table olives.

DOI: 10.18502/jfqhc.8.4.8255
Full-Text [PDF 841 kb]   (288 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/06/15 | Accepted: 21/09/28 | Published: 21/12/29

References
1. Anagnostopoulos D.A., Goulas V., Xenofontos E., Vouras C., Nikoloudakis N., Tsaltas D. (2020). Benefits of the use of lactic acid bacteria starter in green cracked cypriot table olives fermentation. Foods. 9: 17. [DOI: 10.3390/foods9010017] [DOI:10.3390/foods9010017] [PMID] [PMCID]
2. Anagnostopoulos D., Bozoudi D., Tsaltas D. (2017). Yeast ecology of fermented table olives: a tool for biotechnological applications. Yeast - Industrial Applications. 135-152. [DOI: 10.5772/intechopen.70760] [DOI:10.5772/intechopen.70760]
3. Arroyo-López F.N., Querol A., Bautista-Gallego J., Garrido-Fernández A. (2008). Role of yeasts in table olive production. International Journal of Food Microbiology. 128: 189-196. [DOI: 10.1016/j.ijfoodmicro.2008.08.018] [DOI:10.1016/j.ijfoodmicro.2008.08.018] [PMID]
4. Bautista-Gallego J., Rodríguez-Gómez F., Barrio E., Querol A., Garrido-Fernández A., Arroyo-López F.N. (2011). Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. International Journal of Food Microbiology. 147: 89-96. [DOI: 10.1016/j.ijfoodmicro. 2011.03.013] [DOI:10.1016/j.ijfoodmicro.2011.03.013] [PMID]
5. Bevilacqua A., Campaniello D., Speranza B., Sinigaglia M., Corbo M.R. (2018). Survival of Listeria monocytogenes and Staphylococcus aureus in synthetic brines. Studying the effects of salt, temperature and sugar through the approach of the design of experiments. Frontiers in Microbiology. 9: 240. [DOI: 10.3389/fmicb.2018.00240] [DOI:10.3389/fmicb.2018.00240] [PMID] [PMCID]
6. Blana V.A., Grounta A., Tassou C.C., Nychas G.-J.E., Panagou E.Z. (2014). Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiology. 38: 208-218. [DOI: 10.1016/j.fm.2013.09. 007] [DOI:10.1016/j.fm.2013.09.007] [PMID]
7. Chammem N., Kachouri M., Mejri M., Peres C., Boudabous A., Hamdi M. (2005). Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Bioresource Technology. 96: 1311-1316. [DOI: 10.1016/j. biortech.2004.10.005] [DOI:10.1016/j.biortech.2004.10.005] [PMID]
8. Chranioti C., Kotzekidou P., Gerasopoulos D. (2018). Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives. LWT. 89: 403-408. [DOI: 10.1016/j.lwt.2017.11.007] [DOI:10.1016/j.lwt.2017.11.007]
9. Code des pratiques loyales pour les olives de table. (2018). Version 10
10. De Castro A., Sánchez A.H., Cortés-Delgado A., López-López A., Montaño A. (2019). Effect of Spanish-style processing steps and inoculation with Lactobacillus pentosus starter culture on the volatile composition of cv. Manzanilla green olives. Food Chemistry. 271: 543-549. [DOI: 10.1016/j.foodchem.2018.07. 166] [DOI:10.1016/j.foodchem.2018.07.166] [PMID]
11. Durante M., Tufariello M., Tommasi L., Lenucci M.S., Bleve G., Mita G. (2018). Evaluation of bioactive compounds in black table olives fermented with selected microbial starters. Journal of the Science of Food and Agriculture. 98: 96-103. [DOI: 10.1002/jsfa.8443] [DOI:10.1002/jsfa.8443] [PMID]
12. El Issaoui K., Khay E.O., Abrini J., Zinebi S., Amajoud N., Senhaji N.S., Abriouel H. (2021). Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Archives of Microbiology. 203: 597-607. [DOI: 10.1007/s00203-020-02053-0] [DOI:10.1007/s00203-020-02053-0] [PMID]
13. Franzetti L., Scarpellini M., Vecchio A., Planeta D. (2011). Microbiological and safety evaluation of green table olives marketed in Italy. Annals of Microbiology. 61: 843-851. [DOI: 10.1007/s13213-011-0205-x] [DOI:10.1007/s13213-011-0205-x]
14. García P., Romero C., Brenes M. (2018). Bioactive substances in black ripe olives produced in spain and the USA. Journal of Food Composition and Analysis. 66: 193-198. [DOI: 10.1016/j.jfca.2017.12.022] [DOI:10.1016/j.jfca.2017.12.022]
15. Ghabbour N., Rokni Y., Lamzira Z., Thonart P., Chihib N.-E., Peres C., Asehraou A. (2016). Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading Lactobacilli strains. Grasas y Aceites. 67: 1-7. [DOI: 10.3989/gya. 0759152] [DOI:10.3989/gya]
16. Grounta A., Tassou C.C., Panagou E.Z. (2017). 16 Greek-style table olives and their functional value. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing. 1st Edition. 325-342. [DOI:10.1002/9781119135340.ch16]
17. Gueboudji Z., Kadi K., Nagaz K. (2021). Extraction and quantification of polyphenols of olive oil mill wastewater from the cold extraction of olive oil in the region of Khenchela-Algeria. Genetics and Biodiversity Journal. 116-122. [DOI:10.2478/ebtj-2021-0023]
18. He F.J., MacGregor G.A. (2018). Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nature Reviews Cardiology. 15: 371-377. [DOI: 10.1038/s41569-018-0004-1] [DOI:10.1038/s41569-018-0004-1] [PMID]
19. Lanza B., Di Serio M.G., Russi F., Iannucci E., Giansante L., Di Loreto G., Di Giacinto L. (2014). Evaluation of the nutritional value of oven-dried table olives (cv. Majatica) processed by the Ferrandina style. Rivista Italiana Delle Sostanze Grasse. 91: 117-127.
20. Marsilio V., Seghetti L., Iannucci E., Russi F., Lanza B., Felicioni M. (2005). Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. Journal of the Science of Food and Agriculture. 85: 1084-1090. [DOI: 10.1002/jsfa.2066] [DOI:10.1002/jsfa.2066]
21. Maslanka S.E., Solomon H.M., Sharma S., Johnson E.A. (2013). Clostridium botulinum and its toxins. Compendium of Methods for the Microbiological Examination of Foods. [DOI: 10.2105/MBEF.0222.037] [DOI:10.2105/MBEF.0222.037]
22. Mateus T., Santo D., Saúde C., Pires-Cabral P., Quintas C. (2016). The effect of NaCl reduction in the microbiological quality of cracked green table olives of the Maçanilha Algarvia cultivar. International Journal of Food Microbiology. 218: 57-65. [DOI: 10.1016/j.ijfoodmicro.2015.11.008] [DOI:10.1016/j.ijfoodmicro.2015.11.008] [PMID]
23. Medina E., García‐García P., Romero C., De Castro A., Brenes M. (2020). Aerobic industrial processing of Empeltre cv. natural black olives and product characterisation. International Journal of Food Science and Technology. 55: 534-541. [DOI: 10.1111/ijfs.14282] [DOI:10.1111/ijfs.14282]
24. Moreno-González R., Juan M.E., Planas J.M. (2020). Profiling of pentacyclic triterpenes and polyphenols by LC-MS in Arbequina and Empeltre table olives. LWT. 126: 109310. [DOI: 10.1016/j.lwt.2020.109310] [DOI:10.1016/j.lwt.2020.109310]
25. Mozaffarian D., Fahimi S., Singh G.M., Micha R., Khatibzadeh S., Engell R.E., Lim S., Danaei G., Ezzati M., Powles J. (2014). Global sodium consumption and death from cardiovascular causes. The New England Journal of Medicine. 371: 624-634. [DOI: 10.1056/NEJMoa1304127] [DOI:10.1056/NEJMoa1304127] [PMID]
26. Özay G., Borcakh M. (1995). Effect of brine replacement and salt concentration on the fermentation of naturally black olives. Food Research International. 28: 553-559. [DOI: 10.1016/0963-9969(95)00054-2] [DOI:10.1016/0963-9969(95)00054-2]
27. Pasten A., Uribe E., Stucken K., Rodríguez A., Vega-Gálvez A. (2019). Influence of drying on the recoverable high-value products from olive (cv. Arbequina) waste cake. Waste and Biomass Valorization. 10: 1627-1638. [DOI: 10.1007/s12649-017-0187-4] [DOI:10.1007/s12649-017-0187-4]
28. Pino A., De Angelis M., Todaro A., Van Hoorde K., Randazzo C.L., Caggia C. (2018). Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Frontiers in Microbiology. 9: 1125. [DOI: 10.3389/fmicb.2018.01125] [DOI:10.3389/fmicb.2018.01125] [PMID] [PMCID]
29. Pistarino E., Aliakbarian B., Casazza A.A., Paini M., Cosulich M.E., Perego P. (2013). Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food chemistry. 138: 2043-2049. [DOI: 10.1016/j.foodchem.2012.11.021] [DOI:10.1016/j.foodchem.2012.11.021] [PMID]
30. Porru C., Rodríguez-Gómez F., Benítez-Cabello A., Jiménez-Díaz R., Zara G., Budroni M., Mannazzu I., Arroyo-López F.N. (2018). Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiology. 69: 33-42. [DOI: 10.1016/j.fm.2017.07.010] [DOI:10.1016/j.fm.2017.07.010] [PMID]
31. Rokni Y., Ghabbour N., Chihib N.-E., Thonart P., Asehraou A. (2015). Caractérisation physico-chimique et microbiologique du processus de fermentation naturelle des olives vertes de la variété picholine marocaine. Physico-chemical and microbiological characterization of the natural fermentation of Moroccan picholine green olives variety. Journal of Materials and Environmental Science. 6: 1740-1751
32. Romeo F.V., Timpanaro N., Intelisano S., Rapisarda P. (2018). Quality evaluation of Aitana, Caiazzana and Nocellara del Belice table olives fermented with a commercial starter culture. Emirates Journal of Food and Agriculture. 30: 604-610. [DOI: 10.9755/ejfa.2018.v30.i7.1748] [DOI:10.9755/ejfa.2018.v30.i7.1748]
33. Romero C., Brenes M., Yousfi K., García P., García A., Garrido A. (2004). Effect of cultivar and processing method on the contents of polyphenols in table olives. Journal of Agricultural and Food Chemistry. 52: 479-484. [DOI: 10.1021/jf030525l] [DOI:10.1021/jf030525l] [PMID]
34. Sánchez-Rodríguez L., Cano-Lamadrid M., Carbonell-Barrachina Á.A., Wojdyło A., Sendra E., Hernández F. (2018). Polyphenol profile in Manzanilla table olives as affected by water deficit during specific phenological stages and Spanish-style processing. Journal of Agricultural and Food Chemistry. 67: 661-670. [DOI: 10.1021/acs.jafc.8b06392] [DOI:10.1021/acs.jafc.8b06392] [PMID]
35. Singleton V.L., Orthofer R., Lamuela-Raventós R.M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 299: 152-178. [DOI: 10.1016/S0076-6879(99) 99017-1] [DOI:10.1016/S0076-6879(99)99017-1]
36. Tassou C.C., Panagou E.Z., Katsaboxakis K.Z. (2002). Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiology. 19: 605-615. [DOI: 10.1006/fmic. 2002.0480] [DOI:10.1006/fmic.2002.0480]
37. Tofalo R., Perpetuini G., Schirone M., Suzzi G., Corsetti A. (2013). Yeast biota associated to naturally fermented table olives from different Italian cultivars. International Journal of Food Microbiology. 161: 203-208. [DOI: 10.1016/j.ijfoodmicro.2012. 12.011] [DOI:10.1016/j.ijfoodmicro.2012.12.011] [PMID]
38. Trade standard applying to table olives. (2004). International Olive Oil Council.
39. Wabaidur S.M., Obbed M.S., Alothman Z.A., Alfaris N.A., Badjah-Hadj-Ahmed A.Y., Siddiqui M.R., Altamimi J.Z., Aldayel T.S. (2020). Total phenolic acids and flavonoid contents determination in Yemeni honey of various floral sources: Folin-Ciocalteu and spectrophotometric approach. Food Science and Technology. 40: 647-652. [DOI: 10.1590/fst.33119] [DOI:10.1590/fst.33119]
40. Zinno P., Guantario B., Perozzi G., Pastore G., Devirgiliis C. (2017). Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del belice table olives. Food Microbiology. 63: 239-247. [DOI: 10.1016/j.fm.2016.12.001] [DOI:10.1016/j.fm.2016.12.001] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.