Occurrence of Aflatoxin M₁ in Pasteurized and Traditional Cheese Marketed in Southern Khorasan, Iran

M. Khodadadi¹, R. Khosravi¹, A. Allahresani², Y. Khaksar³, L. Rafati⁴, B. Barikbin¹*

1. Social Determinants of Health Research Center, Birjand University of Medical Science, Birjand, Iran
2. Chemistry Faculty, Birjand University, Birjand, Iran
3. Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
4. Department of Environmental Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Background: Aflatoxin M₁ (AFM₁) is a toxic and carcinogenic mycotoxin which after presence in milk and dairy products such as cheese and butter could make them as contaminated food. The main objective of this study was to evaluate the concentration of AFM₁ in pasteurized and traditional cheese marketed in southern Khorasan, from December 2011 to January 2012.

Methods: A total of 102 cheese samples (including 43 non-pasteurized traditional and 59 pasteurized cheese) were analyzed for detection of AFM₁. The samples were collected randomly from three major cities of southern Khorasan province, Iran. A rapid and sensitive indirect competitive Enzyme Linked Immuno Sorbent Assay (ELISA) method using monoclonal antibody was used to measure AFM₁ concentration in the samples.

Results: According to the results of this study, AFM₁ was detected in 14 (32.55%) traditional and 21 (35.59%) pasteurized cheese samples. In total, 25.42% of pasteurized and 27.90% of traditional cheese samples were contaminated at above level of the Iranian standard limits (50 ng/kg).

Conclusion: Considering high contamination level of both pasteurized and traditional cheese products in southern Khorasan, it is recommended to establish continuous monitoring program of AFM₁ by food safety agencies in order to control the incidence of mycotoxin contamination.

Introduction

Mycotoxins are common toxic metabolites of fungi produced mainly by specific moulds genera such as Aspergillus, Penicillium and Fusarium. Aflatoxins biosynthesized by toxicogenic strains of Aspergillus flavus, Aspergillus parasiticus and Aspergillus nomius can contaminate corn and grain crops after harvest during the drying process (Fallah, 2010a; Montaseri et al., 2014). Outbreaks of aflatoxicosis were firstly noted in the 1960s in England, when more than 100000 turkeys on poultry farms died due to consumption of aflatoxin contaminated feed. There are four main types of aflatoxins consist of B₁, B₂, G₁ and G₂. Aflatoxin G₁ (AFG₁) causes cancer in animals (Sidhu et al., 2009), but aflatoxin B₁ (AFB₁) is carcinogen for both animal and human. For achieving this characteristic, AFB₁ must be metabolized (Kursat et al., 2011). Aflatoxin M₁ (AFM₁) which is the hydroxilated metabolite of AFB₁, found in milk and milk-derived products obtained from livestock that have ingested AFB₁ contaminated feed (Sidhu et al., 2009).

Dairy products as valuable sources of calcium and proteins should be placed in a healthy human diet. AFM₁ is more concentrated in cheese compared to its corresponding

*Corresponding author
E-mail: b_barikbin@yahoo.com
milk; therefore, cheese is considered to be the most potent source of AFM$_1$ among dairy products (Ardic et al., 2009; Tekinsen and Tekinsen, 2005).

However, AFM$_1$ is less toxic than AFB$_1$, but it is known as hepatotoxic and carcinogenic toxin (Lee et al., 2009). Complications of aflatoxicosis consist of anemia, hepatotoxicosis, hemorrhage, teratogenesis, carcinogenesis and mutagenesis (Arast et al., 2012).

Referring to scientific literature, many studies have been carried out in different countries to assess the occurrence of AFM$_1$ in milk and dairy products. Although numerous researches have been conducted on the incidence of AFM$_1$ in dairy products in Iran (Alborzi et al., 2006; Fallah, 2010a; Fallah, 2010b; Ghazani, 2009; Hasanzadeh Khayat et al., 1999; Kamkar, 2006; Oveis et al., 2007; Tajik et al., 2007), there is little information about the occurrence of AFM$_1$ in cheese. Also, it has been stated that the presence and amount of milk products contamination with AFM$_1$ show variations according to geographical area, country and season.

Therefore, this study was aimed to evaluate the presence and levels of AFM$_1$ in pasteurized and traditional cheese marketed in three major cities of Southern Khorasan province of Iran.

Materials and methods

Sampling

This cross-sectional study was carried out on a total of 102 samples of non-pasteurized traditional cheeses (n=43) and marketed pasteurized one (n=59) distributed in Southern Khorasan province of Iran from December 2011 to January 2012.

Non-pasteurized traditional cheeses, from three major cities including Birjand (n=19), Qhaen (n=15) and Ferdows (n=9), and pasteurized one, including three known brands named as brand A (n=19), B (n=20) and C (n=20), were purchased randomly from supermarkets. All samples were stored at 4 °C and analyzed for presence of AFM$_1$ before their expiry date.

Determination of AFM$_1$ in the samples by indirect competitive ELISA

The quantity of AFM$_1$ was determined using the Rocket International test Kit (Rocket International Company, Cat No. EEM005096) with competitive ELISA with ELISA Reader (Anthos device 2020, Italy).

In order to extract the solution, 5 ml of methanol was added to 1 g of each sample and mixed for 5 min at room temperature, centrifuged at 6000 xg for additional 5 min. The sample was left at room temperature for 4-5 min. Then, 1 ml of the upper layer was discarded and the solvent was volatilized. Also, 1 ml of Phosphate Buffered Saline (PBS) buffer was added to the solution and mixed for 1 min. Afterward, the mixture was again centrifuged at 6000 xg for additional 5 min. Finally, the mixtures were diluted (1:2 v/v) by addition of 0.3 ml PBS buffer and then used for quantitative tests. For the next step, 200 µl of enzyme conjugate was added to each well and mixed by shaking the plate manually and then incubated for 15 min at room temperature in the dark. Chromogen stained in red (200 µl) was added to each well and mixed manually for 10 min additional incubation at room temperature in the dark. Stop solution (5 µl) added to each well, led to color change from blue to yellow. The plate was mixed manually again gently by shaking and subjected to absorbance measures at 450 nm. Distilled water (200 µl) was added to the control well and 200 µl of prepared sample solution or AFM$_1$ standard were added to other wells followed by gently shaking of the plate and 10 min incubation at room temperature in the dark. The liquid was then poured out completely from the wells and the wells were fulfilled with 300 µl of diluted rinsing buffer. The buffer is then discarded out of the wells. This stage of procedure was repeated 2 more times.

In the next step, 200 µl of conjugate enzyme was added to each well but not to the control well. Afterward, they were mixed by shaking the plate manually and incubated for 15 min at room temperature in the dark. Rinsing the wells with diluted buffer was performed for 3 times. Then, 200 µl chromogen was added to each well and incubated for 10 min at room temperature in the dark. Following, 50 µl of the stop reagent was added to each well, leading to color change from blue to yellow. The light absorption was read at 450 nm.

Statistical analysis

The results were analyzed with SPSS software version 16 using independent t-test. P value of <0.05 was considered as significant.

Results

Findings of this survey revealed presence of AFM$_1$ in 35 (34.3%) of 102 cheese samples (Table 1). AFM$_1$ was found above detectable level (5 ng/kg) in 32.55% and 35.59% of traditional and pasteurized cheese samples, respectively. Totally, 27.90% of traditional and 25.42% of pasteurized cheese samples exceeded Iran legal regulation (50 ng/kg).

AFM$_1$ levels were above Iranian national standard in 31.6%, 20% and 33.3% of traditional cheese obtained from Birjand, Qhaen and Ferdous, respectively. This rate in pasteurized cheese samples were 31.6%, 20% and 25% in brand A, B and C, respectively. There was no significant difference in AFM$_1$ level between traditional and pasteurized cheese (p>0.05).
Table 1: AFM1 level in cheese samples distributed in Southern Khorasan province of Iran

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Sample size</th>
<th>Distribution percentage of the levels of AFM1 (ng/kg)</th>
<th>Max (ng/kg)</th>
<th>Mean (ng/kg)</th>
<th>Min (ng/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><5</td>
<td>5-50</td>
<td>51-150</td>
<td>151-250</td>
</tr>
<tr>
<td>Birjand TC</td>
<td>19</td>
<td>63.2</td>
<td>5.3</td>
<td>31.6</td>
<td>0</td>
</tr>
<tr>
<td>Qhaen TC</td>
<td>15</td>
<td>73.3</td>
<td>6.7</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Ferdows TC</td>
<td>9</td>
<td>66.7</td>
<td>0</td>
<td>33.3</td>
<td>0</td>
</tr>
<tr>
<td>PC (Brand A)</td>
<td>19</td>
<td>57.9</td>
<td>10.5</td>
<td>15.8</td>
<td>10.5</td>
</tr>
<tr>
<td>PC (Brand B)</td>
<td>20</td>
<td>70</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>PC (Brand C)</td>
<td>20</td>
<td>65</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

TC: Traditional Cheese
PC: Pasteurized Cheese

Table 2: AFM1 contents of cheese samples reported in the other previous studies carried out in different countries

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>Sample size</th>
<th>Positive sample (%)</th>
<th>Range of contamination (ng/kg)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>100</td>
<td>81</td>
<td>51-800</td>
<td>Sarimehmetoglu et al., 2004</td>
</tr>
<tr>
<td>Finland</td>
<td>10</td>
<td>0</td>
<td>Not determined</td>
<td>Kokkonen et al., 2005</td>
</tr>
<tr>
<td>Brazil</td>
<td>75</td>
<td>74.6</td>
<td>20-6920</td>
<td>Prado et al., 2000</td>
</tr>
<tr>
<td>Turkey</td>
<td>127</td>
<td>28.3</td>
<td>70.61-770.97</td>
<td>Kav et al., 2011</td>
</tr>
<tr>
<td>North Africa</td>
<td>20</td>
<td>75</td>
<td>110-520</td>
<td>Elgerbi et al., 2004</td>
</tr>
<tr>
<td>Iran (Esfahan)</td>
<td>88</td>
<td>53.4</td>
<td>82-1254</td>
<td>Rahimi et al., 2009</td>
</tr>
<tr>
<td>Iran (Central part of Iran)</td>
<td>72</td>
<td>81.9</td>
<td>30-1200</td>
<td>Fallah et al., 2010b</td>
</tr>
<tr>
<td>Iran (Lighvan village)</td>
<td>75</td>
<td>65.3</td>
<td>30-313</td>
<td>Fallah et al., 2011</td>
</tr>
<tr>
<td>Iran (Tehran)</td>
<td>50</td>
<td>60</td>
<td>40.9-374.0</td>
<td>Tavakoli et al., 2012</td>
</tr>
</tbody>
</table>

Discussion

Milk and dairy products play major role in a healthy human diet and should be highly consumed by infants and children because of their rich mineral contents (Baskaya et al., 2006). According to high toxicity and carcinogenicity of AFM1, its incidence in cheeses, as a concentrated dairy product is of great concern. ELISA, High Performance Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) are the most common methods for the detection of mycotoxins in food and feeds (Fallah, 2010a; Fallah, 2010b). Institute of Standards and Industrial Research of Iran (ISIRI, 2005) set the maximum permissible level of 50 ng/l for AFM1 in liquid milk. According to this survey, AFM1 was found in 35 (34.3%) of 102 cheese samples indicating high importance from public health point of view.

According to Table 2, several researchers have reported the presence of AFM1 in various cheese types; the AFM1 levels were varied from one study to another (Hassanzadeh Khayat et al., 1999). The differences of the AFM1 concentration in dairy products can be attributed to multiple variables such as type of cheese, cheese-making procedures, analysis method, season and geographical area (Fallah et al., 2009; Fallah et al., 2011; Tavakoli et al., 2012).

In this survey, no statistical significant difference was observed in AFM1 level between traditional and pasteurized cheese. This finding may be attributed to this fact that in some regions of Iran, the origin of raw milk used to prepare both traditional and pasteurized cheese, is the same.

According to results obtained from this study, AFM1 level of 26.47% of samples was above the maximum permissible level set by ISIRI (2005). As occurrence of AFM1 contamination, even below maximum permissible levels, can lead to health complications, AFM1 contamination of dairy products, especially cheese, in Iran seems to be a serious public health problem especially in children.

Conclusion

The results of present study showed high frequency of AFM1 contamination in cheese marketed in Southern Khorasan province of Iran. Therefore, it seems critical to keep animal feeds free from contamination by AFB1. The best way to deal with this problem is to reduce AFB1 contamination in animal food stuffs by improved processing and storage practices. In addition, continuous monitoring program by food safety agencies is highly recommended to control the incidence of aflatoxin contamination in dairy products of this country.

Conflicts of interest

The authors declare that there are no conflicts of interest.
Acknowledgement

The authors would like to thank Birjand University of Medical Sciences, Iran for financial and technical supports during this study.

References

