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HIGHLIGHTS 

 A significant chi-square test requires post-hoc analysis to identify specific differences. 

 Pairwise Z-tests effectively compare proportions between categories of a categorical variable. 

 The Bonferroni correction controls for Type I error during multiple comparisons. 

 This method provides clear identification of significant cells within contingency tables. 
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 ABSTRACT 

Background: In medical research, analyzing the relationship between two categorical 

variables is common. While chi-square tests (e.g., Pearson's, McNemar's, and Cochran-

Mantel-Haenszel) can determine if a significant association exists, they do not identify which 

specific categories differ. This tutorial aimed to examine post hoc tests that enable detailed 

pairwise comparisons of variable categories following a significant chi-square result. 

Methods: This tutorial instructs on conducting pairwise Z-tests for comparing 

proportions, followed by the Bonferroni correction to adjust p-values for multiple 

comparisons. It also reviews and contrasts four alternative post-hoc approaches for 

contingency tables: standardized residuals, partitioning, cell comparison, and ransacking. 

A practical guide for implementing the Bonferroni-adjusted Z-test in common statistical 

software (R, SPSS, Stata) is provided. 

Results: The Bonferroni-adjusted pairwise Z-test provides a straightforward and 

accessible method for pinpointing significant differences within a contingency table. This 

approach, readily available in major statistical software, simplifies interpretation by 

directly adjusting p-values and highlighting specific cells with significant deviations. 

Conclusion: To mitigate the increased Type I error risk from multiple comparisons, the 

Bonferroni adjustment is a crucial tool for post hoc analysis after a significant chi-square 

test. Compared to other, more complex techniques, it offers a simpler and more intuitive 

framework for accurately identifying where significant differences lie. 
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Introduction 

Historically, humans have sought to understand 

relationships and causality. Statistics is a fundamental 

discipline for investigating these potential causal links 

(Madadizadeh and Bahariniya, 2022a). The analysis of 

relationships is a fundamental aspect of statistical science, 

employing a variety of methods (Bahariniya and 

Madadiniya, 2021). Among these, the chi-square test is one 

of the most prevalent and widely used techniques for 

identifying associations between qualitative variables 

(Madadizadeh and Bahariniya, 2022b; McHugh, 2013). 

Several tests based on chi-square statistics are used to 

examine relationships between qualitative variables, 

including Pearson’s χ² (Sharpe, 2015), the Chi-square test 

for trend (Preacher, 2001), McNemar’s test (Fedrizzi and 

Ferrari, 2018), the Cochran-Mantel-Haenszel test (Cox and 

Key, 1993), and Fisher’s exact test (Narum, 2006). When a 

chi-square test yields a significant result, one question 

arises: which specific levels of the variables are driving 

this association? To answer this, pairwise comparisons 

(Post-hoc tests) must be conducted between the proportions 

in the rows or columns of the contingency table (Connelly, 

2019; Lachenbruch, 2014; Liu et al., 2019). 

Discussions of post-hoc tests often focus on pairwise 

comparisons of means following ANOVA, as this is well-

covered in the literature. A primary function of these tests 

is to control the Type I error rate—the incorrect detection 

of a significant difference where none exists—making their 

application both necessary and crucial. For analyzing two 

qualitative variables, the chi-square test is frequently 

employed, and its use in medical literature is increasing 

(Bahariniya and Madadizadeh, 2021; Madadizadeh and 

Bahariniya, 2022a, 2022b). However, guidance on 

performing post-hoc tests after a significant chi-square 

result is notably lacking. Therefore, a tutorial on the proper 

application of post-hoc chi-square tests is imperative. 

To address this gap, we have developed this tutorial 

article. Our primary objective is to provide guidance on 

using the Z-test for comparing proportions and the 

Bonferroni correction to adjust p-values for pairwise 

comparisons following a significant chi-square test. We 

also review four other post-hoc methods for contingency 

table analysis: calculating standardized residuals, 

partitioning, cell comparison, and ransacking. Finally, we 

offer practical guidelines for implementing the Bonferroni 

test using statistical software. 

Methods 

This article is structured as a tutorial, organized into the 

following sections. Section 1 provides an explanation of 

the chi-square test, including its formulations, hypothesis 

testing procedures, and various applications. Section 2 

offers a review of the different methodological approaches 

available for conducting pairwise comparisons following a 

significant chi-square test. Section 3 details the specific 

procedures for the Z-test for comparing two proportions 

and the Bonferroni-adjusted pairwise comparison test. This 

section is supplemented with numerical examples based on 

real-world data from the Isfahan Cohort Study and includes 

a practical guide for implementing the Bonferroni test in 

common statistical software. 

Pearson's chi-square test 

-Purpose, different application 

Pearson’s chi-square test (often denoted as χ²) is a 

widely used non-parametric method for assessing the 

relationship between two qualitative variables (nominal or 

ordinal). It evaluates the distribution of observations across 

the combinations of the variables' levels. In scientific 

research, the chi-square test has three primary applications: 

1. Goodness-of-Fit test: Determines how well the 

observed data fit a specified theoretical distribution. 

2. Test of homogeneity: Assesses whether the 

distribution of a categorical variable is the same across 

several populations or groups. 

3. Test of independence: Evaluates whether there is a 

statistically significant association between two qualitative 

variables. 

The corresponding null hypotheses for these applications 

are: 

-Goodness-of-Fit: The observed data are consistent with 

the specified model. 

-Independence: There is no association between the two 

variables (they are independent). 

-Homogeneity: The distributions of the categorical 

variable are identical across the different groups. 

Table 1 summarizes the various tests derived from or 

related to the chi-square, their historical development, and 

their intended design purposes. 
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Table 1:  Summarized all chi-square related tests 

Type of  test History 
Type of  

scale 
Usage 

Pearson χ2 1904- Karl Pearson (Sharpe, 2015) Nominal- Ordinal 
Two or more independent(unpaired) 

variables 

Fisher's exact 
1922- Ronald Aylmer Fisher Frs (Narum, 

2006) 
Ordinal 

Small expected frequencies in two 

unpaired binary variables 

McNemar 
1947- Quinn Mc Nemar (Lachenbruch, 

2014) 
Nominal 

Two binary  variable were dependent 

(paired) 

Cochran–Mantel–Haenszel 

1954- William G. Cochran, Nathan 

Mantel and William Haenszel (Turner, 

2020) 

Nominal-Ordinal 
To the analysis of stratified or matched 

variable 

chi-square test for trend (The 

Cochran–Armitage test for trend,) 

1954-1955- William Cochran and Peter 

Armitage (Read, 1977) 
Nominal-Ordinal 

A binary variable and  a ordered 

categorical variable 

 

-Observed and expected frequency, test statistics  

In the context of a chi-square test, the data presented in a 

contingency table are the Observed Frequencies. The expected 

frequencies, which represent the counts expected if the  

null hypothesis of independence is true, are calculated for  

each cell by multiplying the corresponding row and column 

totals and dividing by the grand total (Preacher, 2001). 

-Example 1: preference for organic foods in a sample 

population 

Suppose a study was carried out to examine the 

preference for organic foods within a population of 200 

individuals. Both men and women were asked about their 

preference for organic foods, and they responded with 

either a yes or no. A summary of the findings can be found 

in table 2, which includes the calculation of observed and 

expected frequencies. 

 

Table 2: Investigating gender and preference for organic foods relationship 

 
Gender Marginal 

Total Female Male 

Preference for organic foods 

Yes Observed Frequencies Expected Frequencies 
15 

15.75 

30 

29.25 
45 

No Observed Frequencies Expected Frequencies 
55 

54.25 

100 

100.75 
155 

Marginal Total 70 130 Overall= 200 

 

Based on Table 2, the observed frequencies are 15, 30, 

55, and 100. The expected frequency for each cell is 

calculated using the formula: expected frequency = (row 

total * column total) / grand total (Preacher, 2001). 

Applying this to the data in Table 2 yields the following 

expected frequencies: 

(45 × 70)/200 = 15.75 

(45 × 130)/200 = 29.25 

(155 × 70)/200 = 54.25 

(155 × 130)/200 = 100.75 

The chi-square test is a non-parametric method that 

quantifies the discrepancy between these observed and 

expected frequencies to determine if a significant 

association exists between the variables. A key advantage 

of this test, like other non-parametric methods, is that it 

does not require assumptions about the underlying data 

distribution, equality of variances, or homogeneity 

(McHugh, 2013; Sharpe, 2015). 

To perform the test, the chi-square statistic is first 

calculated. The degrees of freedom (df) are then 

determined as (number of rows - 1) × (number of columns 

- 1). Finally, the calculated test statistic is compared to the 

critical value from the chi-square distribution table for the 

corresponding df. If the test statistic exceeds the critical 

value, the null hypothesis of independence is rejected 

(Sharpe, 2015). 

The test statistic for the Pearson chi-square test of 

independence for a contingency table with *r* rows and 

*c* columns is calculated as follows (Preacher, 2001): 
2

2
( )r c

ij ij

i j ij

OF EF

EF



               (1) 

Where: 

Oij is the observed frequency for the i-th row and j-th 

column. 

Eij is the expected frequency for the i-th row and j-th 

column. 

Σ denotes the summation over all r rows and c columns. 

Chi-square test assumptions 

The validity of the chi-square test relies on several key 

assumptions (Turner, 2020): 

1. The data must be in the form of frequency counts for 

each cell. 

2. The categories of the variables must be mutually 

exclusive; that is, each observation can belong to only one 

category of each variable. 

3. Each subject or case must contribute to one and only 
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one cell in the contingency table. 

4. The observations must be independent; the value of 

one observation must not influence another. 

5. No more than 20% of the expected frequencies should 

be less than five, and no expected frequency should be less 

than one. If these conditions are not met, Fisher's exact test 

is a more appropriate alternative. 

Conventional approaches to post-hoc analysis of 

contingency tables 

A significant chi-square test indicates an overall 

association but does not identify which specific categories 

contribute to it. To address this, four conventional post-hoc 

methods have been historically employed for contingency 

table analysis: 

1. Analysis of standardized residuals 

2. Partitioning 

3. Cell comparison 

4. Ransacking 

A brief description of each method is provided below 

(Fedrizzi and Ferrari, 2018). 

-Residual analysis as a post-hoc technique 

A long-established method for post-hoc analysis 

involves the calculation of residuals. A residual is defined 

as the difference between an observed frequency and its 

corresponding expected frequency in a contingency table. 

The magnitude of a residual indicates the cell's 

contribution to the overall chi-square statistic; a larger 

residual suggests a greater discrepancy from the null 

hypothesis of independence (Agresti, 2007). Three 

common types of residuals are calculated as follows 

(Agresti, 2013): 

1. Unstandardized residual for ij- the cell =  

OFij – EFij                                                (2) 

2. Standardized residual for ij- the cell = 

ij

 

EF

Unstandardized residual                  (3) 

3. Adjusted standardized residual for ij- the cell =  

ij

 

Ti Tj
EF ×1- ×1-

T T

Unstandardized residual             (4) 

In these formulas, EFij denotes the expected frequency 

for cell (i,j); OFij denotes the observed frequency; Ti is the 

marginal total for the i-th row; Tj is the marginal total for 

the j-th column; and T is the grand total of all observations. 

As a rule of thumb, standardized residuals are typically 

interpreted within a range of -2 to +2. A value exceeding 

an absolute magnitude of 2 suggests that the corresponding 

cell makes a statistically significant contribution to the 

overall significance of the chi-square test (MacDonald and 

Gardner, 2000). 

Cell comparison technique 

This post-hoc method begins after a significant overall 

chi-square test is established. It involves selecting pairs of 

level combinations from the two qualitative variables and 

performing a statistical test for each pair. The resulting test 

statistic for a pair is compared to the critical chi-square 

value for the entire table. A test statistic exceeding this 

critical value indicates a significant difference in the 

column proportions between the two levels. 

The test statistic in this method is directly influenced by 

the type of linear contrast used. A contrast is a linear 

combination of parameters (e.g., column proportions) 

where the sum of the coefficients is zero (Turner, 2020). 

Common contrast types include: 

-Orthogonal contrasts: A set where the sum of the 

cross-products of coefficients for any two contrasts is zero 

(assuming equal sample sizes). A maximum of k-1 

orthogonal contrasts are possible for k group means. 

-Polynomial contrasts: A specialized subset of 

orthogonal contrasts used to test for polynomial trends 

(e.g., linear, quadratic) across ordered means. 

-Orthonormal contrasts: Orthogonal contrasts with the 

additional constraint that the sum of the squared 

coefficients for each contrast equals one. 

For instance, a simple contrast to compare two column 

proportions would be defined as: Contrast = (1)*P1 + (-

1)*P2, where the coefficients sum to zero (1+(-1)=0). The 

subsequent test statistic can be formulated and summarized 

using this straightforward contrast. 

Test statistics 

For a pairwise comparison, a simple contrast can be 

defined as p1− p2. The test statistic for this contrast is given 

by: 

 Estimated Contrast

SE(Estimated Cont
z=

rast)

 1 2

1 1 2 2

1 2

ˆ ˆp -p
z=

ˆ ˆ ˆ ˆp ×q p ×q
+

T T

      (5) 

In this formula, p1 and p2 represent the estimated 

proportions for columns 1 and 2, respectively, with 

qi=1−pi . The terms T1 and T2 denote the marginal totals 

for columns 1 and 2. 

The primary limitation of this post-hoc method is the 

inflation of the Type I error rate due to multiple 

comparisons. Furthermore, the results can be sensitive to 

the specific choice of contrast, which may inadvertently 

influence the interpretation. 

Ransacking post-hoc technique 

The ransacking technique involves decomposing a larger 

contingency table into a series of 2x2 subtables for 

analysis, rather than comparing all cells simultaneously 
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(Goodman, 1969). A significant challenge with this 

method, particularly for large tables, is the inflation of the 

Type I error rate. Conducting multiple statistical tests on 

these subtables increases the probability of falsely rejecting 

a true null hypothesis. 

Partitioning post-hoc technique 

The partitioning method systematically reorganizes an 

*r* x *c* contingency table into a set of independent, 

orthogonal 2 x 2 subtables, thereby reducing the 

dimensionality of the original table. Within these subtables, 

cells that contribute significantly to the overall association 

are identified. Various techniques for partitioning exist 

(Goodman, 1971; Read, 1977). 

A key advantage of orthogonal partitioning is that it 

allows for precise control over the Type I error rate. 

However, the method has two primary limitations: the 

number of possible orthogonal partitions is limited by the 

df of the original table, and many of the resulting partitions 

may not be substantively meaningful. Furthermore, 

research indicates that unless comparisons are statistically 

independent, they cannot be treated as separate and 

unrelated inquiries, a condition that orthogonal partitioning 

is designed to meet. 

Bonferroni correction for post-hoc analysis of contingency 

tables 

Purpose of the test 

In post-hoc pairwise comparisons, the family-wise Type 

I error rate (alpha) increases with each additional test 

performed. To control this inflation, an adjustment to the 

significance level is required (Cabin and Mitchell, 2000). 

The Bonferroni correction is the most common method for 

this purpose, which involves lowering the per-comparison 

alpha level to maintain a desired overall error rate 

(Goodman, 1969). 

The total number of pairwise comparisons CC is 

determined by the number of column levels being 

compared. For nn column levels, the number of 

comparisons is given by C=n(n−1)2C=2n(n−1). The 

Bonferroni-adjusted significance level αadjαadj is then 

calculated as: 

2

n(n-1)
adj

C

 
                    (6) 

The Bonferroni adjustment is applied to the p-values 

obtained from a series of Z-tests for comparing two 

independent proportions. The test statistic for each 

pairwise comparison is calculated as follows: 

1 2 1 1 2 2

1 2

1 2

p -p n ×p +n p
ˆz= , p=

n +n1 1
ˆ ˆp(1-p)[ + ]

n n

             (7) 

Where: 

p1 and p2 are the observed sample proportions for groups 

1 and 2,  

n1 and n2 are the sample sizes for the two groups, 

p^ is the pooled proportion, calculated as p^=x1+x2/n1+n2

, where x1 and x2 are the number of successes in each 

group. 

The Z-test for pairwise comparisons is used to evaluate 

differences in column proportions across different row 

levels. In the results presentation, a common practice is to 

annotate cell counts with letter codes. Cells that share the 

same letter indicate that their column proportions are not 

significantly different from one another within the context 

of the specific row level being compared (Sharpe, 2015). 

Z-test for two independent proportions: assumptions  

The validity of the Z-test for comparing two independent 

proportions relies on the following assumptions (Casella 

and Berger, 2021): 

-Sample size: The sample size should be sufficiently 

large such that the sampling distribution of the proportion 

is approximately normal. This condition is typically met 

when n×p>5 and n×(1−p)>5 for each sample, where n is 

the sample size and p is the proportion. 

-Independence: The data points within each group and 

between the two groups must be independent. 

-Randomization: The data should be obtained through a 

random process, such as simple random sampling. 

-Real data: Isfahan Diabetes Prevention Study (IDPS) 

Cohort 

This study utilizes data from the IDPS, a longitudinal 

cohort study initiated in 2003. The IDPS cohort originally 

consisted of 3,483 first-degree relatives of patients 

diagnosed with type 2 diabetes, who were consecutively 

selected for participation (Abdoli et al., 2021; Safari et al., 

2021). 

-Example 2: relationship between education level and 

patient status 

This example investigates the association between 

education level and patient status, where status is 

categorized as normal, pre-diabetic (Impaired Glucose 

Tolerance [IGT] or Impaired Fasting Glucose [IFG]), or 

diabetic. A chi-square test indicated a significant 

relationship between these two variables (p=0.027), 

suggesting that the distribution of patient status differs 

across education levels. 

To identify which specific patient status proportions 

differed significantly between education levels, a post-hoc 

analysis was performed using pairwise Z-tests with a 

Bonferroni correction. The column variable (patient status) 

has 4 levels, resulting in 6 unique pairwise comparisons  
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( 4

2

4 3
( ) 6

2
C


   ). The significance level was set at α = 

0.05 for the overall family of tests. The results of this 

Bonferroni-adjusted post-hoc analysis are presented in 

Table 3. 

 

Table 3: Frequency table of patients’ status and educational level 

 
Status 

P 
Diabetic IFG IGT Normal 

Educational 

level 

Illiterate Observed Frequencies Expected Frequencies 
14 

9.87 

2 

2.80 

1 

5.18 

4 

3.15 

0.027 

Chi-square 

statistics=18.76 

Under diploma Observed Frequencies Expected Frequencies 
75 

70.97 

21 

20.13 

40 

37.25 

15 

22.65 

Diploma Observed Frequencies Expected Frequencies 
31 

35.72 

13 

10.13 

21 

18.75 

11 

11.40 

University Observed Frequencies Expected Frequencies 
21 

24.44 

4 

6.93 

12 

12.83 

15 

7.80 

IFG=Impaired fasting glucose; IGT=Impaired glucose tolerance 

 

Therefore, the Bonferroni-adjusted significance level is 

calculated as follows: 

0.05
0.0083

6
adj

C


     

This adjusted alpha (0.0083) was used as the significance 

threshold for all pairwise comparisons. 

The results of the post-hoc analysis (Table 4) revealed 

specific differences within educational strata. Among 

illiterate individuals, the proportion of diabetic patients 

(9.9%, n=14) was significantly higher than the proportion 

with Impaired Glucose Tolerance (IGT) (1.4%, n=1). 

Furthermore, within the group with an education level 

below a diploma, the proportion of diabetic patients 

(53.2%, n=75) was significantly higher than the proportion 

with a normal status (33.3%, n=15). 

The remaining results can be interpreted similarly, 

comparing column proportions within each row. It is 

crucial to note that the significance level for these pairwise 

tests was not 0.05, but the corrected value of 0.0083. 

 

Table 4: Results of Z- test and adjusted p value by Bonferroni method. 

 Final status of individuals 

Diabetes IFG IGT Normal 

 
N 

Column 

proportion 
N 

Column 

proportion 
N 

Column 

proportion 
N 

Column 

proportion 

Education 

 

 illiterate 14 9.9% a 2 5.0% a,b 1 1.4% b 4 8.9% a 

Under diploma 75 53.2% a 21 52.5% a 40 54.1% a 15 33.3% b 

Diploma  31 22.0% a 13 32.5% a 21 28.4% a 11 24.4% a 

Upper diploma 21 14.9% a 4 10.0% a 12 16.2% a 15 33.3% b 

Total 141 100.0% 40 100.0% 74 100.0% 45 100.0% 

Each letter denotes a subset of categories whose column proportions do not differ significantly from each other at the 0.05 level. 

 

Software implementation: conducting a Bonferroni post-

hoc test 

This section provides a practical guide for performing a 

Bonferroni-adjusted post-hoc analysis following a 

significant chi-square test in three common statistical 

software environments: SPSS, Stata and R. 

SPSS 

The Bonferroni adjustment is available in the Crosstabs 

procedure. 

1. Navigate to: Analyze > Descriptive Statistics > 

Crosstabs 

2. Specify your Row and Column variables. 

3. Click Statistics and select Chi-square. 

4. Click Cells. In the "Counts" section, ensure Observed is 

selected. In the "Z-test" section, check Compare 

column proportions and select Adjust p-values 

(Bonferroni method). 

5. Click Continue and then OK to run the analysis. 
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Stata 

The Bonferroni-adjusted pairwise comparisons of 

proportions can be performed post-estimation after a 

tabulate command using the prtest command for each pair 

in a loop, manually adjusting the alpha level. Alternatively, 

use the user-written postchi package. 

Menu:  

 

Statistics → Summaries, tables, and tests → Classical tests 

of hypotheses → Proportion test calculator 

 

command: 

* Install the postchi package (once) 

ssc install postchi 

 

* After a tabulation, e.g., tab rowvar colvar, chi2 

postchi, adjust(bonferroni) 

 

R 

The chisq.posthoc.test package provides a direct function 

for this purpose. 

# Install and load the package 

install.packages("chisq.posthoc.test") 

library(chisq.posthoc.test) 

# Perform the post-hoc test 

chisq.posthoc.test(x, method = "bonferroni") 

 

Conclusion 

This tutorial has demonstrated that post-hoc analysis is a 

critical and applicable step following a significant chi-

square test, moving beyond the common perception of its 

use solely in ANOVA. While several historical methods, 

such as residual analysis, partitioning, and ransacking, 

offer ways to interrogate a contingency table, they often 

lack a straightforward mechanism to control the inflated 

Type I error rate inherent in multiple comparisons. The 

pairwise Z-test for proportions, when integrated with the 

Bonferroni correction, directly addresses this fundamental 

limitation. By providing a clear, adjustable significance 

threshold, the Bonferroni method offers a robust and 

interpretable framework for identifying specific category 

differences. Consequently, we strongly recommend its 

adoption for post-hoc pairwise comparisons after a 

significant chi-square result. This approach ensures 

statistical rigor while simplifying the interpretation of 

complex categorical relationships, making it an invaluable 

tool for researchers across medical and social science 

disciplines. 
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