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ABSTRACT

Background: In medical research, analyzing the relationship between two categorical
variables is common. While chi-square tests (e.g., Pearson's, McNemar's, and Cochran-
Mantel-Haenszel) can determine if a significant association exists, they do not identify which
specific categories differ. This tutorial aimed to examine post hoc tests that enable detailed
pairwise comparisons of variable categories following a significant chi-square result.
Methods: This tutorial instructs on conducting pairwise Z-tests for comparing
proportions, followed by the Bonferroni correction to adjust p-values for multiple
comparisons. It also reviews and contrasts four alternative post-hoc approaches for
contingency tables: standardized residuals, partitioning, cell comparison, and ransacking.
A practical guide for implementing the Bonferroni-adjusted Z-test in common statistical
software (R, SPSS, Stata) is provided.

Results: The Bonferroni-adjusted pairwise Z-test provides a straightforward and
accessible method for pinpointing significant differences within a contingency table. This
approach, readily available in major statistical software, simplifies interpretation by
directly adjusting p-values and highlighting specific cells with significant deviations.
Conclusion: To mitigate the increased Type | error risk from multiple comparisons, the
Bonferroni adjustment is a crucial tool for post hoc analysis after a significant chi-square
test. Compared to other, more complex techniques, it offers a simpler and more intuitive
framework for accurately identifying where significant differences lie.
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Introduction

Historically, humans have sought to understand
relationships and causality. Statistics is a fundamental
discipline for investigating these potential causal links
(Madadizadeh and Bahariniya, 2022a). The analysis of
relationships is a fundamental aspect of statistical science,
employing a variety of methods (Bahariniya and
Madadiniya, 2021). Among these, the chi-square test is one
of the most prevalent and widely used techniques for
identifying associations between qualitative variables
(Madadizadeh and Bahariniya, 2022b; McHugh, 2013).

Several tests based on chi-square statistics are used to
examine relationships between qualitative variables,
including Pearson’s %> (Sharpe, 2015), the Chi-square test
for trend (Preacher, 2001), McNemar’s test (Fedrizzi and
Ferrari, 2018), the Cochran-Mantel-Haenszel test (Cox and
Key, 1993), and Fisher’s exact test (Narum, 2006). When a
chi-square test yields a significant result, one question
arises: which specific levels of the variables are driving
this association? To answer this, pairwise comparisons
(Post-hoc tests) must be conducted between the proportions
in the rows or columns of the contingency table (Connelly,
2019; Lachenbruch, 2014; Liu et al., 2019).

Discussions of post-hoc tests often focus on pairwise
comparisons of means following ANOVA, as this is well-
covered in the literature. A primary function of these tests
is to control the Type | error rate—the incorrect detection
of a significant difference where none exists—making their
application both necessary and crucial. For analyzing two
qualitative variables, the chi-square test is frequently
employed, and its use in medical literature is increasing
(Bahariniya and Madadizadeh, 2021; Madadizadeh and
Bahariniya, 2022a, 2022b). However, guidance on
performing post-hoc tests after a significant chi-square
result is notably lacking. Therefore, a tutorial on the proper
application of post-hoc chi-square tests is imperative.

To address this gap, we have developed this tutorial
article. Our primary objective is to provide guidance on
using the Z-test for comparing proportions and the
Bonferroni correction to adjust p-values for pairwise
comparisons following a significant chi-square test. We
also review four other post-hoc methods for contingency
table analysis: calculating standardized residuals,
partitioning, cell comparison, and ransacking. Finally, we
offer practical guidelines for implementing the Bonferroni

CCBY 4.0

test using statistical software.
Methods

This article is structured as a tutorial, organized into the
following sections. Section 1 provides an explanation of
the chi-square test, including its formulations, hypothesis
testing procedures, and various applications. Section 2
offers a review of the different methodological approaches
available for conducting pairwise comparisons following a
significant chi-square test. Section 3 details the specific
procedures for the Z-test for comparing two proportions
and the Bonferroni-adjusted pairwise comparison test. This
section is supplemented with numerical examples based on
real-world data from the Isfahan Cohort Study and includes
a practical guide for implementing the Bonferroni test in
common statistical software.

Pearson's chi-square test
-Purpose, different application

Pearson’s chi-square test (often denoted as ¥?) is a
widely used non-parametric method for assessing the
relationship between two qualitative variables (nominal or
ordinal). It evaluates the distribution of observations across
the combinations of the variables' levels. In scientific
research, the chi-square test has three primary applications:

1. Goodness-of-Fit test: Determines how well the
observed data fit a specified theoretical distribution.

2. Test of homogeneity: Assesses whether the
distribution of a categorical variable is the same across
several populations or groups.

3. Test of independence: Evaluates whether there is a
statistically significant association between two qualitative
variables.

The corresponding null hypotheses for these applications
are:

-Goodness-of-Fit: The observed data are consistent with
the specified model.

-Independence: There is no association between the two
variables (they are independent).

-Homogeneity: The distributions of the categorical
variable are identical across the different groups.

Table 1 summarizes the various tests derived from or
related to the chi-square, their historical development, and
their intended design purposes.
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Table 1: Summarized all chi-square related tests

Type of

Type of test History scale Usage
Pearson 1904- Karl Pearson (Sharpe, 2015) Nominal- Ordinal I;/\r/i(;glre;nore independent(unpaired)
Fisher's exact 1922- Ronald Aylmer Fisher Frs (Narum, Ordinal Smal_l expe_cted freq_uenues in two
2006) unpaired binary variables
McNemar 1947- Quinn Mc Nemar (Lachenbruch, Nominal Tw_o binary variable were dependent
2014) (paired)

1954- William G. Cochran, Nathan

Mantel and William Haenszel (Turner, To the analysis of stratified or matched

Nominal-Ordinal h
variable

Cochran—Mantel-Haenszel

2020)

chi-square test for trend (The

Cochran—Armitage test for trend,) Armitage (Read, 1977)

1954-1955- William Cochran and Peter

A binary variable and a ordered

Nominal-Ordinal : -
categorical variable

-Observed and expected frequency, test statistics

In the context of a chi-square test, the data presented in a
contingency table are the Observed Frequencies. The expected
frequencies, which represent the counts expected if the
null hypothesis of independence is true, are calculated for
each cell by multiplying the corresponding row and column
totals and dividing by the grand total (Preacher, 2001).

-Example 1: preference for organic foods in a sample

Table 2: Investigating gender and preference for organic foods relationship

population

Suppose a study was carried out to examine the
preference for organic foods within a population of 200
individuals. Both men and women were asked about their
preference for organic foods, and they responded with
either a yes or no. A summary of the findings can be found
in table 2, which includes the calculation of observed and
expected frequencies.

Gender Marginal
Female Male Total
Yes Observed Frequencies Expected Frequencies 15 30 45
. 15.75 29.25
Preference for organic foods 55 100
No Observed Frequencies Expected Frequencies 54.05 100.75 155
Marginal Total 70 130 Overall= 200

Based on Table 2, the observed frequencies are 15, 30,
55, and 100. The expected frequency for each cell is
calculated using the formula: expected frequency = (row
total * column total) / grand total (Preacher, 2001).
Applying this to the data in Table 2 yields the following
expected frequencies:

(45 x 70)/200 = 15.75

(45 x 130)/200 = 29.25

(155 x 70)/200 = 54.25

(155 x 130)/200 = 100.75

The chi-square test is a non-parametric method that
quantifies the discrepancy between these observed and
expected frequencies to determine if a significant
association exists between the variables. A key advantage
of this test, like other non-parametric methods, is that it
does not require assumptions about the underlying data
distribution, equality of variances, or homogeneity
(McHugh, 2013; Sharpe, 2015).

To perform the test, the chi-square statistic is first
calculated. The degrees of freedom (df) are then
determined as (number of rows - 1) x (number of columns
- 1). Finally, the calculated test statistic is compared to the
critical value from the chi-square distribution table for the
corresponding df. If the test statistic exceeds the critical

value, the null hypothesis of independence is rejected
(Sharpe, 2015).

The test statistic for the Pearson chi-square test of
independence for a contingency table with *r* rows and
*c* columns is calculated as follows (Preacher, 2001):

) e (OFiJ. —EFij)Z 1
YL, v
Where:

Oij is the observed frequency for the i-th row and j-th
column.

Eij is the expected frequency for the i-th row and j-th
column.

¥ denotes the summation over all r rows and ¢ columns.

Chi-square test assumptions

The validity of the chi-square test relies on several key
assumptions (Turner, 2020):

1. The data must be in the form of frequency counts for
each cell.

2. The categories of the variables must be mutually
exclusive; that is, each observation can belong to only one
category of each variable.

3. Each subject or case must contribute to one and only
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one cell in the contingency table.

4. The observations must be independent; the value of
one observation must not influence another.

5. No more than 20% of the expected frequencies should
be less than five, and no expected frequency should be less
than one. If these conditions are not met, Fisher's exact test
is a more appropriate alternative.

Conventional approaches to post-hoc analysis of
contingency tables

A significant chi-square test indicates an overall
association but does not identify which specific categories
contribute to it. To address this, four conventional post-hoc
methods have been historically employed for contingency
table analysis:

1. Analysis of standardized residuals

2. Partitioning

3. Cell comparison

4. Ransacking

A brief description of each method is provided below
(Fedrizzi and Ferrari, 2018).

-Residual analysis as a post-hoc technique

A long-established method for post-hoc analysis
involves the calculation of residuals. A residual is defined
as the difference between an observed frequency and its
corresponding expected frequency in a contingency table.
The magnitude of a residual indicates the cell's
contribution to the overall chi-square statistic; a larger
residual suggests a greater discrepancy from the null
hypothesis of independence (Agresti, 2007). Three
common types of residuals are calculated as follows
(Agresti, 2013):

1. Unstandardized residual for ij- the cell =

OFij - EFij (2)
2. Standardized residual for ij- the cell =
Unstandardized residual 3)
\/Eij

3. Adjusted standardized residual for ij- the cell =
Unstandardized residual 4

\/EE.Xl-EXLB
TTT

In these formulas, EFij denotes the expected frequency
for cell (i,j); OFij denotes the observed frequency; Ti is the
marginal total for the i-th row; Tj is the marginal total for
the j-th column; and T is the grand total of all observations.

As a rule of thumb, standardized residuals are typically
interpreted within a range of -2 to +2. A value exceeding
an absolute magnitude of 2 suggests that the corresponding
cell makes a statistically significant contribution to the
overall significance of the chi-square test (MacDonald and
Gardner, 2000).

CCBY 4.0

Cell comparison technique

This post-hoc method begins after a significant overall
chi-square test is established. It involves selecting pairs of
level combinations from the two qualitative variables and
performing a statistical test for each pair. The resulting test
statistic for a pair is compared to the critical chi-square
value for the entire table. A test statistic exceeding this
critical value indicates a significant difference in the
column proportions between the two levels.

The test statistic in this method is directly influenced by
the type of linear contrast used. A contrast is a linear
combination of parameters (e.g., column proportions)
where the sum of the coefficients is zero (Turner, 2020).
Common contrast types include:

-Orthogonal contrasts: A set where the sum of the
cross-products of coefficients for any two contrasts is zero
(assuming equal sample sizes). A maximum of k-1
orthogonal contrasts are possible for k group means.

-Polynomial contrasts: A specialized subset of
orthogonal contrasts used to test for polynomial trends
(e.g., linear, quadratic) across ordered means.

-Orthonormal contrasts: Orthogonal contrasts with the
additional constraint that the sum of the squared
coefficients for each contrast equals one.

For instance, a simple contrast to compare two column
proportions would be defined as: Contrast = (1)*P; + (-
1)*P,, where the coefficients sum to zero (1+(-1)=0). The
subsequent test statistic can be formulated and summarized
using this straightforward contrast.

Test statistics

For a pairwise comparison, a simple contrast can be
defined as p;— p,. The test statistic for this contrast is given

by:

,— _Estimated Contrast__ p,-p, (5)
SE(Estimated Contrast) ~  [5xg, _ p,xd,
+ - < ‘<
Tl TZ

In this formula, p, and p, represent the estimated
proportions for columns 1 and 2, respectively, with
qi=1—-pi . The terms T, and T, denote the marginal totals
for columns 1 and 2.

The primary limitation of this post-hoc method is the
inflation of the Type | error rate due to multiple
comparisons. Furthermore, the results can be sensitive to
the specific choice of contrast, which may inadvertently
influence the interpretation.

Ransacking post-hoc technique

The ransacking technique involves decomposing a larger
contingency table into a series of 2x2 subtables for
analysis, rather than comparing all cells simultaneously
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(Goodman, 1969). A significant challenge with this
method, particularly for large tables, is the inflation of the
Type | error rate. Conducting multiple statistical tests on
these subtables increases the probability of falsely rejecting
a true null hypothesis.

Partitioning post-hoc technique

The partitioning method systematically reorganizes an
*r* x *c* contingency table into a set of independent,
orthogonal 2 x 2 subtables, thereby reducing the
dimensionality of the original table. Within these subtables,
cells that contribute significantly to the overall association
are identified. Various techniques for partitioning exist
(Goodman, 1971; Read, 1977).

A key advantage of orthogonal partitioning is that it
allows for precise control over the Type | error rate.
However, the method has two primary limitations: the
number of possible orthogonal partitions is limited by the
df of the original table, and many of the resulting partitions
may not be substantively meaningful. Furthermore,
research indicates that unless comparisons are statistically
independent, they cannot be treated as separate and
unrelated inquiries, a condition that orthogonal partitioning
is designed to meet.

Bonferroni correction for post-hoc analysis of contingency
tables

Purpose of the test

In post-hoc pairwise comparisons, the family-wise Type
| error rate (alpha) increases with each additional test
performed. To control this inflation, an adjustment to the
significance level is required (Cabin and Mitchell, 2000).
The Bonferroni correction is the most common method for
this purpose, which involves lowering the per-comparison
alpha level to maintain a desired overall error rate
(Goodman, 1969).

The total number of pairwise comparisons CC is
determined by the number of column levels being
compared. For nn column levels, the number of
comparisons is given by C=n(n—1)2C=2n(n—1). The
Bonferroni-adjusted significance level cadjoadj is then
calculated as:

o 2 2a ©)
4 C n(n1)

The Bonferroni adjustment is applied to the p-values
obtained from a series of Z-tests for comparing two
independent proportions. The test statistic for each
pairwise comparison is calculated as follows:

P,-P, A= N, Xp, +N,P, (7)

el 1 n.+n
/p(l-p)[—+—] v
nl n2

7=
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Where:

p: and p, are the observed sample proportions for groups
land2,

n; and n, are the sample sizes for the two groups,

p” is the pooled proportion, calculated as p™=x;+X,/n;+n,
, Where x; and x, are the number of successes in each
group.

The Z-test for pairwise comparisons is used to evaluate
differences in column proportions across different row
levels. In the results presentation, a common practice is to
annotate cell counts with letter codes. Cells that share the
same letter indicate that their column proportions are not
significantly different from one another within the context
of the specific row level being compared (Sharpe, 2015).

Z-test for two independent proportions: assumptions

The validity of the Z-test for comparing two independent
proportions relies on the following assumptions (Casella
and Berger, 2021):

-Sample size: The sample size should be sufficiently
large such that the sampling distribution of the proportion
is approximately normal. This condition is typically met
when nxp>5 and nx(1—p)>5 for each sample, where n is
the sample size and p is the proportion.

-Independence: The data points within each group and
between the two groups must be independent.

-Randomization: The data should be obtained through a
random process, such as simple random sampling.

-Real data: Isfahan Diabetes Prevention Study (IDPS)
Cohort

This study utilizes data from the IDPS, a longitudinal
cohort study initiated in 2003. The IDPS cohort originally
consisted of 3,483 first-degree relatives of patients
diagnosed with type 2 diabetes, who were consecutively
selected for participation (Abdoli et al., 2021; Safari et al.,
2021).

-Example 2: relationship between education level and
patient status

This example investigates the association between
education level and patient status, where status is
categorized as normal, pre-diabetic (Impaired Glucose
Tolerance [IGT] or Impaired Fasting Glucose [IFG]), or
diabetic. A chi-square test indicated a significant
relationship between these two variables (p=0.027),
suggesting that the distribution of patient status differs
across education levels.

To identify which specific patient status proportions
differed significantly between education levels, a post-hoc
analysis was performed using pairwise Z-tests with a
Bonferroni correction. The column variable (patient status)
has 4 levels, resulting in 6 unique pairwise comparisons

CCBY 4.0
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(c = ¢)= 4x3 —g)- The significance level was set at o =
2

0.05 for the overall family of tests. The results of this

Table 3: Frequency table of patients” status and educational level

Bonferroni-adjusted post-hoc analysis are presented in
Table 3.

Status p
Diabetic IFG IGT Normal
Illiterate Observed Frequencies Expected Frequencies 14 2 1 4
4 P 4 9.87 280 5.8 315
. . . 75 21 40 15
Educational Under diploma Observed Frequencies Expected Frequencies 70.97 2013 3725 2265 (_).027
level Diploma Observed Frequencies Expected Frequencies 31 13 21 11 sta%t;tli-sgyigem
P 4 P 4 3572 1013 1875 11.40 e
L . . 21 4 12 15
University Observed Frequencies Expected Frequencies 24.44 6.93 12.83 780

IFG=Impaired fasting glucose; IGT=Impaired glucose tolerance

Therefore, the Bonferroni-adjusted significance level is
calculated as follows:

" :Cﬁzo'—gS:o.oow

This adjusted alpha (0.0083) was used as the significance
threshold for all pairwise comparisons.

The results of the post-hoc analysis (Table 4) revealed
specific differences within educational strata. Among
illiterate individuals, the proportion of diabetic patients
(9.9%, n=14) was significantly higher than the proportion

Table 4: Results of Z- test and adjusted p value by Bonferroni method.

with Impaired Glucose Tolerance (IGT) (1.4%, n=1).
Furthermore, within the group with an education level
below a diploma, the proportion of diabetic patients
(53.2%, n=75) was significantly higher than the proportion
with a normal status (33.3%, n=15).

The remaining results can be interpreted similarly,
comparing column proportions within each row. It is
crucial to note that the significance level for these pairwise
tests was not 0.05, but the corrected value of 0.0083.

Final status of individuals

Diabetes IFG IGT Normal
N Column N Column Column Column
proportion proportion proportion proportion
illiterate 14 9.9% ? 2 5.0% *° 1 1.4%"° 4 8.9%2
Education Under diploma 75 53.2%*° 21 52.5% * 40 54.1%? 15 33.3%"°
Diploma 31 22.0%? 13 32.5%°? 21 28.4%°* 11 24.4%?
Upper diploma 21 14.9% ? 4 10.0% ? 12 16.2% ° 15 33.3%"°
Total 141 100.0% 40 100.0% 74 100.0% 45 100.0%

Each letter denotes a subset of categories whose column proportions do not differ significantly from each other at the 0.05 level.

Software implementation: conducting a Bonferroni post-
hoc test

This section provides a practical guide for performing a
Bonferroni-adjusted  post-hoc  analysis following a
significant chi-square test in three common statistical
software environments: SPSS, Stata and R.

SPSS

The Bonferroni adjustment is available in the Crosstabs
procedure.

CCBY 4.0

1.Navigate to: Analyze > Descriptive Statistics >
Crosstabs

2. Specify your Row and Column variables.

3. Click Statistics and select Chi-square.

4. Click Cells. In the "Counts" section, ensure Observed is
selected. In the "Z-test" section, check Compare
column proportions and select Adjust p-values
(Bonferroni method).

5. Click Continue and then OK to run the analysis.
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tl" Crosstabs: Cell Display @

v Crosstabs =
R%w[s}: Exacl..
& variabled M
Locets. D
Column(s}:
d:lvariableZ
Layer 1 of 1
-»
[] Display clustered bar charts
[7] suppress tables
[_ok ][ aste |[ Reset | [cancel|[ Hein |

Counts
i@fgbsewed 7§ compare column proportions

Expected [¥ Adjust p-values (Bonferroni method),
[ Hide small counts

Percentages Residuals
[¥ Unstandardized

[¥/ Standardized

[¥ Adjusted standardized

Noninteger Weights

@ Round cell counts  © Round case weights
@ Truncate cell counts © Truncate case weights
© No adjustments

[continue] [ cancel [ Hep |

Stata

The Bonferroni-adjusted pairwise comparisons of
proportions can be performed post-estimation after a
tabulate command using the prtest command for each pair
in a loop, manually adjusting the alpha level. Alternatively,
use the user-written postchi package.

Menu:

Statistics — Summaries, tables, and tests — Classical tests
of hypotheses — Proportion test calculator

command:
* Install the postchi package (once)
ssc install postchi

* After a tabulation, e.g., tab rowvar colvar, chi2
postchi, adjust(bonferroni)

R
The chisg.posthoc.test package provides a direct function
for this purpose.

# Install and load the package
install.packages("chisq.posthoc.test")
library(chisg.posthoc.test)

# Perform the post-hoc test
chisq.posthoc.test(x, method = "bonferroni")

Conclusion

This tutorial has demonstrated that post-hoc analysis is a
critical and applicable step following a significant chi-
square test, moving beyond the common perception of its
use solely in ANOVA. While several historical methods,
such as residual analysis, partitioning, and ransacking,
offer ways to interrogate a contingency table, they often
lack a straightforward mechanism to control the inflated
Type | error rate inherent in multiple comparisons. The

323 Journal website: http://jfghc.ssu.ac.ir

pairwise Z-test for proportions, when integrated with the
Bonferroni correction, directly addresses this fundamental
limitation. By providing a clear, adjustable significance
threshold, the Bonferroni method offers a robust and
interpretable framework for identifying specific category
differences. Consequently, we strongly recommend its
adoption for post-hoc pairwise comparisons after a
significant chi-square result. This approach ensures
statistical rigor while simplifying the interpretation of
complex categorical relationships, making it an invaluable
tool for researchers across medical and social science
disciplines.
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