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HIGHLIGHTS 

 Full models for internal quality attributes of orange fruits had low performance.  

 Full models for external quality attributes presented a high performance for L*, a*, b*, and color index. 

 The simplified models presented similar performance to those obtained for external quality attributes. 

 Hyperspectral reflectance imaging has potential for predicting color of oranges in an objective and noncontact way. 

 

ABSTRACT 

Background: Hyperspectral image analysis is a fast and non-destructive technique that is 

being used to measure quality attributes of food products. This research investigated the 

feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), 

pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes 

such as color components (L*, a*, b*) as well as Color Index (CI) of Valencia orange 

fruit using hyperspectral reflectance imaging in the range of 400-1000 nm. 

Methods: Oranges were scanned by the system in order to build full models for predict-

ing quality attributes using partial least squares regression. Optimal wavelengths were 

identified using the regression coefficients from full models, which were used to build 

simplified models by multiple linear regression. The coefficient of determination of  

prediction (R
2
p) and the Standard Error of Prediction (SEP) were used to measure the  

performance of the models obtained. 

Results: Full models for internal quality attributes had low performance (R
2
p<0.3, 

SEP>50%). Full models for external quality attributes presented a high performance for 

L* (R
2
p=0.898, SEP=19%), a* (R

2
p=0.952, SEP=13%), b* (R

2
p=0.922, SEP=20%), and 

CI (R
2
p=0.972, SEP=12%). The simplified models presented similar performance to those 

obtained for external quality attributes. 

Conclusion: Hyperspectral reflectance imaging has potential for predicting color of  

oranges in an objective and noncontact way. 

© 2019, Shahid Sadoughi University of Medical Sciences. This is an open access article 

under the Creative Commons Attribution 4.0 International License. 

 

Introduction 

   The quality of the fresh fruit is defined by a series of 

external attributes that determine their suitability for the 

consumer (Saldaña   et  al.,  2014).  These  attributes  can  
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include size, weight, shape, color, or absence of defects, 

which in turn are used to sort the fruit manually or auto-

matically. In addition, internal quality attributes,  such  as
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Acronyms and abbreviations 
CI=Color Index 

R
2
c=Coefficient of determination 

of calibration 

R
2
p=Coefficient of determination 

of prediction   

ROI=Region of Interest 

SEC=Standard Error of Calibra-

tion 

SEP=Standard Error of Predic-

tion      

TA=Titratable Acidity 

TSS=Total Soluble Solids 
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firmness, water content, soluble solids content, pH, and 

titratable acidity are also very important in the modern 

food industry (Siche et al., 2016). Instrumental  

techniques to measure these attributes can be destructive 

or involve a considerable amount of manual labor,  

which is slow, costly, and subject to human error  

and inconsistencies (Barreto et al., 2018). Therefore,  

accurate, reliable, and nondestructive systems are needed 

to examine automatically the products.  

   In this sense, hyperspectral imaging has emerged as a 

promising technology in the food quality assurance  

due to its precision, speed, as well as the minimum  

level of sample preparation (Vejarano et al., 2017). This  

technology that integrates spectroscopy and conventional 

image analysis allows the identification of different  

components simultaneously and the location of their spa-

tial distribution in a sample (Orrillo et al., 2019). For 

these purposes, spectral data is processed through  

multivariate statistical methods that handle the high  

dimensionality and collinearity of the data to obtain 

quantitative models. One of these methods is the partial 

least squares regression, which has been widely utilized 

to build robust and reliable empirical predictive models 

for applications in food products (Aredo et al., 2017; 

ElMasry et al., 2007; Huang et al., 2014).  

   Quality attributes of different fruits have been previous 

assessed in some researches by hyperspectral imaging. In 

these studies, the reflectance mode was the most often 

used to obtain spectral information (Siche et al., 2016). 

For example, it had been used for predicting color and 

firmness of bananas in a spectral region of 400-1023 nm 

(Xie et al., 2018) and Total Soluble Solids (TSS) of  

apples in the spectral region of 900-1700 nm (Dong et 

al., 2016) and 1000-2500 nm (Zhang et al., 2019). Also, 

hyperspectral imaging had been applied for evaluation of 

TSS of kiwifruit in the spectral region of 865-1712 nm 

(Guo et al., 2016) and TSS, Titratable Acidity (TA), and 

maturity index (TSS/TA) of limes in the spectral region 

of 929-1671 nm (Teerachaichayut and Ho, 2017). Hence, 

ripeness, astringency, and firmness of persimmon in a 

spectral region of 450-1020 nm had been identified using 

hyperspectral imaging (Munera et al., 2017). 

   Orange is the most important commercial citrus fruit 

and is mainly cultivated in countries such as Brazil,  

China, United States, and Mexico. In 2018/2019, global 

orange production is expected to reach 51.8 million  

metric tons, with 56% of this production destined for 

consumption as fresh fruit (USDA, 2019). In addition, a 

noncontact method for measuring quality of fresh orange 

fruit, which allows automation of the sorting of this fruit, 

could decrease costs and ensure its quality.  

   Previously, hyperspectral reflectance imaging has been 

used with success in the evaluation of external quality 

attributes  of   orange  fruit  as  the  presence  of  common  

defects as decay caused by fungus (Folch-Fortuny et al., 

2016; Yin et al., 2017), infestation, canker spot, copper 

burn, phytotoxicity, and heterochromatic stripe (Li et al., 

2011). Concerning internal quality attributes of this fruit, 

few hyperspectral imaging studies have been reported. 

For instance, the prediction of TSS by hyperspectral  

reflectance imaging (Guo et al., 2008) and hyperspectral 

laser-induced fluorescence imaging (Liu et al., 2007), 

and classification of maturity (period of growth from 

blossom) by hyperspectral diffuse transmittance imaging 

(Wei et al., 2017).  

   In order to explore a complete measurement of orange 

fruit quality attributes, the main goal of this study was to 

assess the potential of hyperspectral reflectance imaging 

for the prediction of TSS, pH, TA, TSS/TA, color  

components (L*, a*, b*), as well as Color Index (CI) of 

this fruit.  

Materials and methods 

Orange fruit samples 

   Orange fruit samples (Citrus sinensis L., Valencia  

variety) were collected from Rodríguez de Mendo-

za/Amazonas (Peru). In total, 80 samples free of undesir-

able characteristics such as physical damages, diseases, 

and polluting components were used. For a realistic  

application, the fruits were in a range of commercial 

ripeness recommended for local farmers, which was 

evaluated by the descriptive statistics. The samples were 

randomly sorted into two groups; a “calibration set” that 

consisted of 75% of the samples and a “prediction set” 

consisted of the rest of samples for external validation of 

models. This sampling criterion was based on studies 

with similar purposes in grape seeds (Rodríguez-Pulido 

et al., 2014), limes (Teerachaichayut and Ho, 2017), and 

blueberries (Leiva-Valenzuela et al., 2013). 

Hyperspectral imaging system and image acquisition 

   A line-scan hyperspectral imaging system in reflec-

tance mode that acquires images in a spectral region of 

400-1000 nm (Pica XC, Resonon Inc., USA) was used. 

Features of the system were described previously by 

Velásquez et al. (2017).  

   The image acquisition of the orange fruits was carried 

out with an adjusted spectral resolution of 8 nm (yielding 

75 spectral bands) for a rapid acquisition and processing 

of images, and a primary reduction of the dimensionality 

and collinearity of spectral data (Aredo et al., 2017). The 

speed of translation stage was optimized to 0.3 cm/s for 

acquiring proportional images to the real dimensions of 

the sample. Each intact sample was imaged in the  

stem  end  facing  vertically  toward  the  camera  (Leiva-
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Valenzuela et al., 2013). In addition, half-orange fruits 

were also imaged to obtain spectral information from the 

pulp (Ma et al., 2018).  

Reference measurement of quality attributes   

   After the acquisition of images of the samples, the  

reference of the quality attributes was measured. To do 

this, each fruit was manually squeezed and filtered to 

obtain juice, which was used for determination of TSS 

(%; method 932.12), pH (method 981.12), and TA (% 

citric acid; method 942.15) according to AOAC (2005). 

Additionally, the ratio TSS/TA was calculated for defin-

ing the maturity of orange fruit. The color measurement 

in CIELAB space was carried out in five random points 

on the orange fruit skin using a colorimeter (JZ-300, 

Shenzhen Kingwell Instruments Co., China), obtaining 

L*, a*, b* parameters and the CI, which was calculated 

using the following equation: CI=1000*a/(L*b). 

Identification of the Region of Interest (ROI), extraction, 

and correction of reflectance spectrum 

   The tools used in the image processing belong to  

the Spectronon Pro software (Resonon Inc., USA). The  

“selection of spectrally similar pixels” tool identified the 

ROI. Thus, the ROI was constituted by a set of pixels that 

are spectrally similar to the reference pixel (Figure 1a). 

This tool had a high performance in raw images due to no 

selection pixels with saturated reflectance. In intact sam-

ples, the tool was able to select a ROI with low spatial 

variation, avoiding the application of spatial correction 

methods that are used to overcoming the scattering of 

incident light on surface for intact fruits (Gómez-Sanchis 

et al., 2008; Peng and Lu, 2008). For half samples, the 

tool was able to select a ROI without considering differ-

ent elements to the pulp like flavedo, albedo, seeds, etc. 

The raw mean reflectance spectrum of each sample was 

extracted by “mean spectrum” tool within the ROI  

(Figure 1b). Then, the correction of raw mean reflectance 

spectrum was performed to obtain the spectral signature 

of each sample (Figure 1c). For this, two images were 

acquired under the same setting conditions to image the 

samples. A dark image (~0% reflectance), for measuring 

dark current of the camera, was acquired with the light 

off and the camera lens completely covered by the cap. 

Using a white Teflon surface, a white image was  

obtained in order to detect the maximum reflectance 

(Resonon Inc. USA; ~99.9% reflectance). The corrected 

reflectance or relative reflectance (R) was calculated with 

the following equation: R=[(R0-B)/(W-B)]*100; where R0 

is the raw mean reflectance spectrum of the sample, B is 

the mean reflectance of the dark image, and W is the 

mean reflectance of the white image. 

Modeling    

   Partial Least Squares Regression, a multivariable tech-

nique, was used to correlate the reference measurement 

of each quality attribute with the spectral information 

from orange fruit. This regression explains the  

descriptors through orthogonal factors also known as 

latent variables. The optimal number of latent variables 

applied to make the full model was determined by the 

minimum value of the average square error of prediction. 

The full model represented as follows Y=b.X+e.Y is the 

response matrix (1 x 60) of reference values obtained for 

quality attributes (TSS, pH, TA, TSS/TA, L*, a*, b* or 

CI). The b is the matrix of regression coefficients (1 x 

75). The X is the matrix of predictor variables constituted 

by the spectral signatures of the samples (75 x 60) and e 

is the matrix of residual information not explained by the 

model (1 x 60). This step was done in Matlab software 

(MathWorks Inc. USA). The model performance was 

evaluated on the calibration set using the coefficient of 

determination of calibration (R
2

c) and Standard Error of 

Calibration (SEC), and on the prediction set using the 

coefficient of determination of prediction (R
2
p) and 

Standard Error of Prediction (SEP) based on ElMasry et 

al. (2007). The selection of the optimal wavelengths that 

contain relevant information was made by identifying  

the highest local absolute value of the regression  

coefficients of the complete models. Simplified models 

were built by multiple linear regressions for their  

potential implementation in online applications, through 

 multispectral imaging technologies (Liu et al., 2014). 

Additionally, a correlation analysis was carried out  

between the optimal wavelengths and the quality  

attributes for evaluating the regression coefficients of the 

simplified models (Xie et al., 2018). These steps were 

performed in Statistica 5.5 (Statsoft Inc. USA). 

Results 

   The samples exhibited a widely range of variation of 

their quality attributes, since TSS/TA variated from 5.5 

to 15.5 and CI variated from -3.3 to 2.5 (Table 1). The 

identification of the spectral peaks of the samples was 

carried out by a second derivative (Figure 2). Thus, peaks 

at 440, 472, 512, 584, 640, 816, and 976 nm were  

observed for intact and half samples, meanwhile, a  

peak at 672 nm was only detected in intact samples  

(Figure 2a).  

   The building of full models started with the study of 

number of latent variables (Figure 3). In general, for  

internal quality attributes, the exploration of latent varia-

bles for half samples showed a lower mean standard error 

of prediction than intact samples. The optimal number  of
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latent variables identified for intact and half samples was 

similar and relatively high (Figure 3a). It implied that the 

models were as complex for the intact samples as for half 

samples, confirmed through of a high number of optimal 

wavelengths for both type of samples (Figure 4a). For 

external quality attributes was identified a low optimal 

number of latent variables (Figure 3b), indicating the 

feasibility of the peel spectra to explain these attributes. 

The analysis of regression coefficients of the full models 

(Figure 4b) allowed the identification of a few optimal 

wavelengths to study in the model simplification. 

   The performance of the full models for internal  quality 

attributes, in terms of R
2
c, R

2
p, SEC and SEP, confirmed 

that the models for half samples were better than that for 

intact samples (Table 2). The models for intact samples 

had relatively good performance in the calibration set 

(R
2
c>0.57); however, this behavior did not remain in the 

prediction set (R
2
p<0.30). Therefore, the prediction of 

internal quality attributes in intact orange was unviable 

using the built full model. Meanwhile, the models for 

half samples had a relatively good performance in the 

calibration set (R
2
c>0.75) and prediction set (R

2
p>0.46), 

being the highest predictive performance reached for TSS 

(R
2
c=0.886, SEC=0.3 and R

2
p=0.757, SEP=0.5).  

 

 

 

 

 

Figure 1: Main steps for image and spectra processing of orange fruit: (a) identification of the Region of Interest (ROI), (b) raw mean reflectance 

spectrum, and (c) corrected reflectance 

 
 

 
 

 
Table 1: Internal and external quality attributes of orange fruit  

Quality attribute 
Total (80 samples)  Calibration (60 samples)  Prediction (20 samples) 

Range Mean±SD  Range Mean±SD  Range Mean±SD 

TSS (%) 8.1-12.3 10.0±1.0  8.1-12.3 10.0±1.0  8.9-12.0 10.0±0.9 

pH 3.14-3.83 3.53±0.16  3.14-3.83 3.53±0.17  3.34-3.75 3.53±0.13 

TA (%) 0.66-1.51 1.03±0.19  0.66-1.51 1.03±0.20  0.71-1.33 1.06±0.17 

TSS/TA 5.5-15.5 10.0±1.8  5.5-15.5 10.0±1.8  6.7-13.4 9.8±1.9 

L* 54.8-70.0 65.8±3.6  54.8-69.9 66.2±3.2  54.9-70.0 64.5±4.4 

a* -8.2-10.6 4.5±4.2  -8.2-10.6 4.8±3.7  -8.2-10.1 3.8±5.4 

b* 44.5-63.8 59.3±4.2  44.5-63.8 59.6±3.6  44.6-63.7 58.3±5.7 

CI -3.3-2.5 1.1±1.2  -3.2-2.5 1.1±1.1  -3.3-2.5 0.8±1.6 

SD: Standard Deviation; TSS: Total Soluble Solids; TA: Titratable Acidity; CI: Color Index 
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Figure 2: Second derivate spectra of orange fruit: (a) intact and (b) half samples 

 

 
 

 

Figure 3: Mean Standard Error of Prediction (MSEP) of the models for predicting: (a) internal and (b) external quality attributes of orange fruit 

 
 

 
 
Table 2: Performance of the full models for predicting quality attributes in orange fruit 

Quality attribute Sample 
Latent variables 

(No.) 

Calibration  Prediction 

R
2

c SEC  R
2

p SEP SEP (%) 

TSS 
Intact 14 0.745 0.5  0.274 0.8 60 

Half 13 0.886 0.3  0.757 0.5 32 

pH 
Intact 15 0.620 0.11  0.180 0.16 59 

Half 15 0.858 0.07  0.553 0.10 35 

TA 
Intact 15 0.600 0.13  0.127 0.21 64 

Half 15 0.867 0.07  0.575 0.12 37 

TSS/TA 
Intact 15 0.579 1.2  0.297 2.2 54 

Half 15 0.750 0.9  0.465 1.6 45 

L* 

Intact 

3 0.874 1.1  0.898 1.4 19 

a* 8 0.953 0.8  0.952 1.2 13 

b* 5 0.892 1.2  0.922 1.6 20 

CI 8 0.957 0.2  0.972 0.3 12 

R2
c: Coefficient of determination of calibration; R2

p: Coefficient of determination of prediction; SEC: Standard Error of Calibration; 

SEP: Standard Error of Prediction; TSS: Total Soluble Solids; TA: Titratable Acidity; CI: Color Index 
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   The high number of optimal wavelengths of the full 

models for internal quality attributes (Figure 4a) allowed 

an ineffective reduction of the spectral data for building 

simplified models with better performance (data not 

shown). It is worth mentioning that different spectral pre-

processing such as Standard Normal Variate, Savitzky-

Golay filter, first and second derivate, the transformation 

from reflectance to absorbance, and Kubelka-Munk func-

tion were also evaluated  in  the  present  study  (data  not 

shown). However, no encouraging results were achieved  

when compared to those reached with reflectance  

data. 

   The full models for external quality attributes presented 

R
2
c and R

2
p values above 0.87 (Table 2). The SEP was 

higher than SEC for each color attribute; nonetheless, 

SEP values was up to 20%, which suggest that the  

models had a high performance, allowing the study of 

their simplification. 

 

 

 

 

 

 

 

Figure 4: The regression coefficients of the full models for predicting: (a) internal as well as (b) external quality attributes of orange  

fruit 

 

 

 

 

   The analysis correlation of optimal wavelengths for 

external quality attributes (Table 3) showed that only the 

wavelengths between 400-600 nm had a high correlation 

(p<0.05), which could be related to the detection of ca-

rotenoids pigments in the samples. On the other hand, the 

analysis of multiple linear regression revealed that for L* 

parameter, the most of the regression coefficients were 

significant, excepting for 400 nm (p>0.05). However, the 

use of the regression coefficient for 400 nm in the simpli-

fied  model  should  be  considered  since  the  correlation 

analysis evidenced that it is strongly correlated with the 

L* parameter (p<0.05). Meanwhile, all the regression 

coefficients for a* and b* parameters and CI were highly 

significant (p<0.05). On the other hand, the evaluation  

of the simplified models for external quality attributes of 

orange fruit (Figure 5, Table 4) revealed that these  

presented a similar performance to their respective full 

models (Table 2). Therefore, the simplified models  

(Table 3) could be applied in the multispectral imaging 

systems. 
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Table 3: Correlation and multiple linear regression analysis for optimal wavelengths regarding external quality attributes of orange fruit     

Quality 

attribute 

Wavelength 

(nm) 

Correlation analysis 
 

Multiple linear regression analysis 

r value F value Significance 
 

Coefficients Error t value Significance 

L* 

Interception - - - 
 

64.606 1.463 44.17 0.000 

400 0.687 51.91 0.000 
 

19.550 11.376 1.72 0.091 

544 0.674 48.19 0.000 
 

-7.586 2.451 -3.10 0.003 

584 0.605 33.49 0.000 
 

26.983 13.309 2.03 0.047 

992 0.095 0.53 0.471 
 

-34.449 3.628 -9.50 0.000 

a* 

Interception - - - 
 

11.233 1.689 6.65 0.000 

400 0.474 16.77 0.000 
 

-192.866 15.379 -12.54 0.000 

496 0.620 36.24 0.000 
 

237.242 18.057 13.14 0.000 

560 0.622 36.67 0.000 
 

-88.857 9.358 -9.50 0.000 

608 0.121 0.86 0.357 
 

145.275 19.159 7.58 0.000 

744 0.178 1.90 0.174 
 

-129.130 24.281 -5.32 0.000 

848 0.176 1.85 0.179 
 

91.870 28.762 3.19 0.002 

992 0.181 1.97 0.166 
 

-61.303 15.096 -4.06 0.000 

b* 

Interception - - - 
 

65.058 1.578 41.22 0.000 

416 0.676 48.84 0.000 
 

95.046 6.860 13.86 0.000 

560 0.653 43.21 0.000 
 

-40.980 4.488 -9.13 0.000 

664 0.017 0.02 0.896 
 

-111.594 12.037 -9.27 0.000 

984 0.000 0.00 0.999 
 

60.563 9.885 6.13 0.000 

Color Index 

Interception - - - 
 

2.978 0.468 6.36 0.000 

400 0.504 19.790 0.000 
 

-56.878 4.262 -13.35 0.000 

496 0.624 37.062 0.000 
 

65.724 5.012 13.11 0.000 

560 0.609 34.196 0.000 
 

-25.599 2.598 -9.86 0.000 

608 0.183 2.015 0.161 
 

54.359 5.305 10.25 0.000 

744 0.120 0.843 0.362 
 

-50.252 6.519 -7.71 0.000 

856 0.116 0.785 0.379 
 

31.318 7.929 3.95 0.000 

992 0.116 0.878 0.353 
 

-18.178 4.369 -4.16 0.000 

 

 
 

 

 

Figure 5: Observed versus predicted values of external quality attributes using simplified models: (a) L* parameter, (b) a* parameter, (c) b*  

parameter, and (d) color index 
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Table 4: Performance of the simplified models for predicting color components (L*, a*, and b*) and color index in orange fruit 

Quality attribute 
Number of 

wavelengths 

Calibration  Prediction 

R
2

c SEC  R
2

p SEP SEP (%) 

L* 4 0.862 1.2  0.888 1.5 20 

a* 7 0.943 0.9  0.959 1.1 12 

b* 4 0.888 1.2  0.925 0.3 20 

CI 7 0.947 0.2  0.974 0.3 9 

R2
c: Coefficient of determination of calibration; R2

p: Coefficient of determination in prediction; SEC: Standard Error of 

Calibration; SEP: Standard Error of Prediction 

 

 

 

 

Table 5: Data comparison between this study and similar previous studies performed on prediction of quality attributes of orange fruit   

Quality attribute Mode 
Spectral 

range (nm) 

Orange 

variety 
Method 

Best prediction 

level 
Reference 

Hyperspectral imaging 

 

TSS F 408-1117 Nanfen PCA R
2

p=0.996* Liu et al. (2007) 

TSS R 400-1000 Navel ANN R
2

p=0.690* Guo et al. (2008) 

TSS 

TSS/TA 

CI 

R 400-1000 Valencia PLSR 

R
2

p=0.274 

R
2

p=0.297 

R
2

p=0.974 

This study 

Spectroscopy 

 

TSS 

TA 

pH 

R 570-1850 Valencia PLSR 

R
2

c=0.913 

R
2

c=0.637 

R
2

c=0.499 

Cayuela (2008) 

TSS 

pH 

TA 

TSS/TA 

CI 

R 500-2300 

Sanguinelli, 

Valencia, 

Salustiana, 

Navelate 

PLSR 

R
2

cv=0.83* 

R
2

cv=0.77* 

R
2

cv=0.69* 

R
2

cv=0.66* 

R
2

cv=0.76* 

Cayuela and 

Weiland (2010) 

TSS R 350-1800 Navel 
PCA 

BPNN 
R

2
p=0.83* Liu et al. (2010) 

CI 

TSS 

TA 

R 780-2500 Valencia PLSR 

R
2

p=0.74* 

R
2

p=0.69* 

R
2

p=0.07* 

Magwaza et al. 

(2013) 

TSS 

I 

R 

T 

200-1100 Navel PLSR 

R
2

cv=0.73* 

R
2

cv=0.76* 

R
2

cv=0.83* 

Wang et al. (2014) 

TSS 

TA 

TSS/TA 

R 450-2500 Valencia PLSR 

R
2

p=0.927 

R
2

p=0.929 

R
2

p=0.958 

Ncama et al. (2017) 

*Converted from coefficient of correlation (r) to coefficient of determination (R2) 

TSS: Total Soluble Solids; CI: Color Index; TA: Titratable Acidity; TSS/TA: Maturity index; R: Reflectance; I: Interactance; T: Transmittance;  

F: Fluorescence; PLSR: Partial Least Squares Regression; PCA: Principal Components Analysis; BPNN: Back Propagation Neural Network;  

ANN: Artificial Neural Network 

 

 

 

Discussion 

   The samples showed a widely range of variation in 

TSS, TA, and TSS/TA (Table 1) when compared to the 

measurements reported by Ramful et al. (2011). The  

color of the orange fruits varied from green to yellow 

(Table 1), as expected for Valencia variety. Thus,  

the variation of the quality attributes confirmed the  

suitability of the selected samples for building successful 

predictive models (ElMasry et al., 2013).  

   Statistical descriptors of the calibration set were similar 

to those obtained for total  samples  (Table 1),  indicating  

 
 

that the built models embraced the range of variation of 

total samples. Moreover, the calibration sets generally 

covered the ranges of the prediction sets, suggesting that 

the division of the sample was adequate (Dong et al., 

2016).  

   The intact and half samples showed peaks from 440 nm 

to 640 nm, which could be attributed to carotenoid pig-

ments observed at 435 nm (Huang et al., 2014), 450 nm, 

580 nm (Munera et al., 2017) and in the range of 400- 

600 nm (Munera et al.,  2018)  in  the  other  studies.  The
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intact samples showed a peak at 672 nm, which could be 

related to chlorophyll pigment reported at 673 nm (Zhu et 

al., 2017), 675 nm (Peng and Lu, 2008), and 680 nm 

(Munera et al., 2017). Other peaks were observed in  

intact and half samples at 816 and 976 nm. The peak at 

816 nm could be associated with acids and sugars since 

acids were detected at 800 nm (Munera et al., 2018), and 

sugars were identified at 835 nm (Zhu et al., 2017) and 

840 nm (Xie et al., 2018). The peak detected at 976 nm 

could be related to water and sugars since water was  

detected at 960 nm (ElMasry et al., 2007), 970 nm 

(Munera et al., 2018), and 976 nm (Zhu et al., 2017). On 

the other hand, water and sugars were reported at 970 nm 

(Teerachaichayut and Ho, 2017) and in the ranges of 

960-980 nm (Dong et al., 2016) and 970-980 nm (Leiva-

Valenzuela et al., 2013). In particular, the last peaks were 

difficult to observe in the intact samples when compared 

to half samples. This behavior was expected as the com-

positional and structural differences between the peel and 

pulp result in some difficulty in the extraction of spectral 

data during hyperspectral imaging (Wang et al., 2014). 

   The full models for internal quality attributes reached 

unacceptable predictive performance (Table 2) with  

exception of the full model for TSS in half samples. The 

study of simplification of these models suggested the loss 

of fundamental information and could be the reason why 

some authors had no reports of the simplified models 

recommending the use of full models for industries 

(Rodríguez-Pulido et al., 2014). In that sense, the full 

model for TSS in half samples could be used as a  

complementary assessment to traditional methods in a 

noncontact and rapid way (Ma et al., 2018). In further 

works, the building of simplified models for TSS and 

other internal quality attributes in multispectral imaging 

technologies should involve the exploration of the  

spectral region of near infrared (>1000 nm). It provides 

enhanced sensitivity to internal composition when  

compared to the visible-near infrared region (400-1000 

nm; Ma et al., 2018). 

   Hyperspectral imaging studies in orange fruit were 

focused on the prediction of TSS (Table 5). The R
2
p for 

TSS in intact orange fruit obtained in this study (0.274) 

was lower than those reported for “Navel” orange by 

hyperspectral reflectance imaging (0.691; Guo et al., 

2008) and for “Nanfen” orange fruit by hyperspectral 

laser-induced fluorescence imaging (0.996; Liu et al., 

2007). This difference could be attributed to the fruit 

variety and the hyperspectral imaging technique or  

system setting. Hence, calibration of models by artificial 

neural networks could be time-consuming and unpracti-

cal for recalibrations works and that laser-induced fluo-

rescence could cause damage to fruit (Liu et al., 2007), 

compromising the practical application of the results. 

   Spectroscopy studies in orange fruit were focused on 

predicting TSS, pH, TA, TSS/TA, and CI using mainly 

the reflectance mode (Table 5). In general, good predict-

ing levels for internal quality attributes were reached by 

spectroscopy technique, which could be attributed to the 

use of near infrared region (>1000 nm). The prediction 

level of CI was better for hyperspectral imaging 

(R
2
p=0.974) when compared to the reached maximum 

level by spectroscopy (R
2
cv=0.76; Cayuela and Weiland, 

2010), which demonstrated that the spectral region  

of 400-1000 nm allows the obtaining of high-quality 

information related to color of orange fruit.  

Conclusion 

   Hyperspectral reflectance imaging technique (400-1000 

nm) can be applied to predicting TSS in half orange fruit 

and color (L*, a*, and b* parameters; and CI) in intact 

orange fruit, in an objective and noncontact way. Full 

models for predicting internal quality attributes in  

intact orange fruit (TSS, pH, TA, TSS/TA) had low  

performance. The full and simplified models for external 

quality attributes had high performance, suggesting that 

simplified models could be applied in a multispectral 

reflectance imaging system for predicting color of orange 

fruit. The results of this study can be used as a reference 

in the implementation of multispectral technologies for 

quality assurance of orange fruit. Further improvements 

in the prediction of internal quality attributes in intact 

orange fruit could be achieved in future studies by a  

different spectral region (>1000 nm).  
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