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HIGHLIGHTS

Full models for internal quality attributes of orange fruits had low performance.

Full models for external quality attributes presented a high performance for L*, a*, b*, and color index.

The simplified models presented similar performance to those obtained for external quality attributes.
Hyperspectral reflectance imaging has potential for predicting color of oranges in an objective and noncontact way.
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Acronyms and abbreviations
Cl=Color Index

R%=Coefficient of determination
of calibration

R%=Coefficient of determination
of prediction

ROI=Region of Interest
SEC=Standard Error of Calibra-
tion

SEP=Standard Error of Predic-
tion

TA=Titratable Acidity
TSS=Total Soluble Solids

ABSTRACT

Background: Hyperspectral image analysis is a fast and non-destructive technique that is
being used to measure quality attributes of food products. This research investigated the
feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS),
pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes
such as color components (L*, a*, b*) as well as Color Index (CI) of Valencia orange
fruit using hyperspectral reflectance imaging in the range of 400-1000 nm.
Methods: Oranges were scanned by the system in order to build full models for predict-
ing quality attributes using partial least squares regression. Optimal wavelengths were
identified using the regression coefficients from full models, which were used to build
simplified models by multiple linear regression. The coefficient of determination of
prediction (R?%p) and the Standard Error of Prediction (SEP) were used to measure the
performance of the models obtained.
Results: Full models for internal quality attributes had low performance (R2p<0.3,
SEP>50%). Full models for external quality attributes presented a high performance for
L* (R%=0.898, SEP=19%), a* (R%,=0.952, SEP=13%), b* (R?,=0.922, SEP=20%), and
Cl (Rzp:0.972, SEP=12%). The simplified models presented similar performance to those
obtained for external quality attributes.
Conclusion: Hyperspectral reflectance imaging has potential for predicting color of
oranges in an objective and noncontact way.

© 2019, Shahid Sadoughi University of Medical Sciences. This is an open access article

under the Creative Commons Attribution 4.0 International License.

Introduction

The quality of the fresh fruit is defined by a series of
external attributes that determine their suitability for the
consumer (Saldafia et al., 2014). These attributes can

include size, weight, shape, color, or absence of defects,
which in turn are used to sort the fruit manually or auto-
matically. In addition, internal quality attributes, such as
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firmness, water content, soluble solids content, pH, and
titratable acidity are also very important in the modern
food industry (Siche et al., 2016). Instrumental
techniques to measure these attributes can be destructive
or involve a considerable amount of manual labor,
which is slow, costly, and subject to human error
and inconsistencies (Barreto et al., 2018). Therefore,
accurate, reliable, and nondestructive systems are needed
to examine automatically the products.

In this sense, hyperspectral imaging has emerged as a
promising technology in the food quality assurance
due to its precision, speed, as well as the minimum
level of sample preparation (Vejarano et al., 2017). This
technology that integrates spectroscopy and conventional
image analysis allows the identification of different
components simultaneously and the location of their spa-
tial distribution in a sample (Orrillo et al., 2019). For
these purposes, spectral data is processed through
multivariate statistical methods that handle the high
dimensionality and collinearity of the data to obtain
quantitative models. One of these methods is the partial
least squares regression, which has been widely utilized
to build robust and reliable empirical predictive models
for applications in food products (Aredo et al., 2017;
ElMasry et al., 2007; Huang et al., 2014).

Quality attributes of different fruits have been previous
assessed in some researches by hyperspectral imaging. In
these studies, the reflectance mode was the most often
used to obtain spectral information (Siche et al., 2016).
For example, it had been used for predicting color and
firmness of bananas in a spectral region of 400-1023 nm
(Xie et al., 2018) and Total Soluble Solids (TSS) of
apples in the spectral region of 900-1700 nm (Dong et
al., 2016) and 1000-2500 nm (Zhang et al., 2019). Also,
hyperspectral imaging had been applied for evaluation of
TSS of kiwifruit in the spectral region of 865-1712 nm
(Guo et al., 2016) and TSS, Titratable Acidity (TA), and
maturity index (TSS/TA) of limes in the spectral region
of 929-1671 nm (Teerachaichayut and Ho, 2017). Hence,
ripeness, astringency, and firmness of persimmon in a
spectral region of 450-1020 nm had been identified using
hyperspectral imaging (Munera et al., 2017).

Orange is the most important commercial citrus fruit
and is mainly cultivated in countries such as Brazil,
China, United States, and Mexico. In 2018/2019, global
orange production is expected to reach 51.8 million
metric tons, with 56% of this production destined for
consumption as fresh fruit (USDA, 2019). In addition, a
noncontact method for measuring quality of fresh orange
fruit, which allows automation of the sorting of this fruit,
could decrease costs and ensure its quality.

Previously, hyperspectral reflectance imaging has been
used with success in the evaluation of external quality
attributes of orange fruit as the presence of common
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defects as decay caused by fungus (Folch-Fortuny et al.,
2016; Yin et al., 2017), infestation, canker spot, copper
burn, phytotoxicity, and heterochromatic stripe (Li et al.,
2011). Concerning internal quality attributes of this fruit,
few hyperspectral imaging studies have been reported.
For instance, the prediction of TSS by hyperspectral
reflectance imaging (Guo et al., 2008) and hyperspectral
laser-induced fluorescence imaging (Liu et al., 2007),
and classification of maturity (period of growth from
blossom) by hyperspectral diffuse transmittance imaging
(Wei et al., 2017).

In order to explore a complete measurement of orange
fruit quality attributes, the main goal of this study was to
assess the potential of hyperspectral reflectance imaging
for the prediction of TSS, pH, TA, TSS/TA, color
components (L*, a*, b*), as well as Color Index (ClI) of
this fruit.

Materials and methods

Orange fruit samples

Orange fruit samples (Citrus sinensis L., Valencia
variety) were collected from Rodriguez de Mendo-
za/Amazonas (Peru). In total, 80 samples free of undesir-
able characteristics such as physical damages, diseases,
and polluting components were used. For a realistic
application, the fruits were in a range of commercial
ripeness recommended for local farmers, which was
evaluated by the descriptive statistics. The samples were
randomly sorted into two groups; a “calibration set” that
consisted of 75% of the samples and a “prediction set”
consisted of the rest of samples for external validation of
models. This sampling criterion was based on studies
with similar purposes in grape seeds (Rodriguez-Pulido
et al., 2014), limes (Teerachaichayut and Ho, 2017), and
blueberries (Leiva-Valenzuela et al., 2013).

Hyperspectral imaging system and image acquisition

A line-scan hyperspectral imaging system in reflec-
tance mode that acquires images in a spectral region of
400-1000 nm (Pica XC, Resonon Inc., USA) was used.
Features of the system were described previously by
Velasquez et al. (2017).

The image acquisition of the orange fruits was carried
out with an adjusted spectral resolution of 8 nm (yielding
75 spectral bands) for a rapid acquisition and processing
of images, and a primary reduction of the dimensionality
and collinearity of spectral data (Aredo et al., 2017). The
speed of translation stage was optimized to 0.3 cm/s for
acquiring proportional images to the real dimensions of
the sample. Each intact sample was imaged in the
stem end facing vertically toward the camera (Leiva-
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Valenzuela et al., 2013). In addition, half-orange fruits
were also imaged to obtain spectral information from the
pulp (Ma et al., 2018).

Reference measurement of quality attributes

After the acquisition of images of the samples, the
reference of the quality attributes was measured. To do
this, each fruit was manually squeezed and filtered to
obtain juice, which was used for determination of TSS
(%; method 932.12), pH (method 981.12), and TA (%
citric acid; method 942.15) according to AOAC (2005).
Additionally, the ratio TSS/TA was calculated for defin-
ing the maturity of orange fruit. The color measurement
in CIELAB space was carried out in five random points
on the orange fruit skin using a colorimeter (JZ-300,
Shenzhen Kingwell Instruments Co., China), obtaining
L*, a*, b* parameters and the CI, which was calculated
using the following equation: C1=1000*a/(L*b).

Identification of the Region of Interest (ROI), extraction,
and correction of reflectance spectrum

The tools used in the image processing belong to
the Spectronon Pro software (Resonon Inc., USA). The
“selection of spectrally similar pixels” tool identified the
ROI. Thus, the ROI was constituted by a set of pixels that
are spectrally similar to the reference pixel (Figure 1a).
This tool had a high performance in raw images due to no
selection pixels with saturated reflectance. In intact sam-
ples, the tool was able to select a ROl with low spatial
variation, avoiding the application of spatial correction
methods that are used to overcoming the scattering of
incident light on surface for intact fruits (Gémez-Sanchis
et al., 2008; Peng and Lu, 2008). For half samples, the
tool was able to select a ROl without considering differ-
ent elements to the pulp like flavedo, albedo, seeds, etc.
The raw mean reflectance spectrum of each sample was
extracted by “mean spectrum” tool within the ROI
(Figure 1b). Then, the correction of raw mean reflectance
spectrum was performed to obtain the spectral signature
of each sample (Figure 1c). For this, two images were
acquired under the same setting conditions to image the
samples. A dark image (~0% reflectance), for measuring
dark current of the camera, was acquired with the light
off and the camera lens completely covered by the cap.
Using a white Teflon surface, a white image was
obtained in order to detect the maximum reflectance
(Resonon Inc. USA; ~99.9% reflectance). The corrected
reflectance or relative reflectance (R) was calculated with
the following equation: R=[(Ry-B)/(W-B)]*100; where R,
is the raw mean reflectance spectrum of the sample, B is
the mean reflectance of the dark image, and W is the
mean reflectance of the white image.

Modeling

Partial Least Squares Regression, a multivariable tech-
nique, was used to correlate the reference measurement
of each quality attribute with the spectral information
from orange fruit. This regression explains the
descriptors through orthogonal factors also known as
latent variables. The optimal number of latent variables
applied to make the full model was determined by the
minimum value of the average square error of prediction.
The full model represented as follows Y=b.X+e.Y is the
response matrix (1 x 60) of reference values obtained for
quality attributes (TSS, pH, TA, TSS/TA, L*, a*, b* or
Cl). The b is the matrix of regression coefficients (1 x
75). The X is the matrix of predictor variables constituted
by the spectral signatures of the samples (75 x 60) and e
is the matrix of residual information not explained by the
model (1 x 60). This step was done in Matlab software
(MathWorks Inc. USA). The model performance was
evaluated on the calibration set using the coefficient of
determination of calibration (R°;) and Standard Error of
Calibration (SEC), and on the prediction set using the
coefficient of determination of prediction (R%) and
Standard Error of Prediction (SEP) based on EIMasry et
al. (2007). The selection of the optimal wavelengths that
contain relevant information was made by identifying
the highest local absolute value of the regression
coefficients of the complete models. Simplified models
were built by multiple linear regressions for their
potential implementation in online applications, through
multispectral imaging technologies (Liu et al., 2014).
Additionally, a correlation analysis was carried out
between the optimal wavelengths and the quality
attributes for evaluating the regression coefficients of the
simplified models (Xie et al., 2018). These steps were
performed in Statistica 5.5 (Statsoft Inc. USA).

Results

The samples exhibited a widely range of variation of
their quality attributes, since TSS/TA variated from 5.5
to 15.5 and CI variated from -3.3 to 2.5 (Table 1). The
identification of the spectral peaks of the samples was
carried out by a second derivative (Figure 2). Thus, peaks
at 440, 472, 512, 584, 640, 816, and 976 nm were
observed for intact and half samples, meanwhile, a
peak at 672 nm was only detected in intact samples
(Figure 2a).

The building of full models started with the study of
number of latent variables (Figure 3). In general, for
internal quality attributes, the exploration of latent varia-
bles for half samples showed a lower mean standard error
of prediction than intact samples. The optimal number of
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latent variables identified for intact and half samples was
similar and relatively high (Figure 3a). It implied that the
models were as complex for the intact samples as for half
samples, confirmed through of a high number of optimal
wavelengths for both type of samples (Figure 4a). For
external quality attributes was identified a low optimal
number of latent variables (Figure 3b), indicating the
feasibility of the peel spectra to explain these attributes.
The analysis of regression coefficients of the full models
(Figure 4b) allowed the identification of a few optimal
wavelengths to study in the model simplification.

The performance of the full models for internal quality

attributes, in terms of R%, R%, SEC and SEP, confirmed
that the models for half samples were better than that for
intact samples (Table 2). The models for intact samples
had relatively good performance in the calibration set
(R%>0.57); however, this behavior did not remain in the
prediction set (R%,<0.30). Therefore, the prediction of
internal quality attributes in intact orange was unviable
using the built full model. Meanwhile, the models for
half samples had a relatively good performance in the
calibration set (R°%>0.75) and prediction set (R?,>0.46),
being the highest predictive performance reached for TSS
(R°.=0.886, SEC=0.3 and R*,=0.757, SEP=0.5).
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Figure 1: Main steps for image and spectra processing of orange fruit: (a) identification of the Region of Interest (ROI), (b) raw mean reflectance

spectrum, and (c) corrected reflectance

Table 1: Internal and external quality attributes of orange fruit

Total (80 samples)

Calibration (60 samples)

Quiality attribute

Prediction (20 samples)

Range Mean+SD Range Mean+SD Range Mean+SD
TSS (%) 8.1-12.3 10.0+1.0 8.1-12.3 10.0+1.0 8.9-12.0 10.0+0.9
pH 3.14-3.83 3.53+0.16 3.14-3.83 3.53+0.17 3.34-3.75 3.53+0.13
TA (%) 0.66-1.51 1.03+0.19 0.66-1.51 1.03+0.20 0.71-1.33 1.06+0.17
TSSITA 5.5-15.5 10.0+1.8 5.5-15.5 10.0+1.8 6.7-13.4 9.8+1.9
L* 54.8-70.0 65.8+3.6 54.8-69.9 66.2+3.2 54.9-70.0 64.5+4.4
a* -8.2-10.6 4.5+4.2 -8.2-10.6 4.8+3.7 -8.2-10.1 3.815.4
b* 44.5-63.8 59.3+4.2 44.5-63.8 59.6+3.6 44.6-63.7 58.3+5.7
Cl -3.3-2.5 1.141.2 -3.2-2.5 1.1+1.1 -3.3-2.5 0.8+1.6

SD: Standard Deviation; TSS: Total Soluble Solids; TA: Titratable Acidity; Cl: Color Index
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Figure 3: Mean Standard Error of Prediction (MSEP) of the models for predicting: (a) internal and (b) external quality attributes of orange fruit

Table 2: Performance of the full models for predicting quality attributes in orange fruit

. . Latent variables Calibration Prediction
Quiality attribute Sample (No.) R SEC Rzp SEP SEP (%)
TsS Intact 14 0.745 0.5 0.274 0.8 60

Half 13 0.886 0.3 0.757 0.5 32
oH Intact 15 0.620 0.11 0.180 0.16 59
Half 15 0.858 0.07 0.553 0.10 35
TA Intact 15 0.600 0.13 0.127 0.21 64
Half 15 0.867 0.07 0.575 0.12 37
Intact 15 0.579 1.2 0.297 2.2 54
TSSITA Half 15 0.750 0.9 0.465 1.6 45
L* 3 0.874 1.1 0.898 1.4 19
a* Intact 8 0.953 0.8 0.952 1.2 13
b* 5 0.892 1.2 0.922 1.6 20
Cl 8 0.957 0.2 0.972 0.3 12

R?.: Coefficient of determination of calibration; Rzp: Coefficient of determination of prediction; SEC: Standard Error of Calibration;
SEP: Standard Error of Prediction; TSS: Total Soluble Solids; TA: Titratable Acidity; CI: Color Index
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The high number of optimal wavelengths of the full
models for internal quality attributes (Figure 4a) allowed
an ineffective reduction of the spectral data for building
simplified models with better performance (data not
shown). It is worth mentioning that different spectral pre-
processing such as Standard Normal Variate, Savitzky-
Golay filter, first and second derivate, the transformation
from reflectance to absorbance, and Kubelka-Munk func-
tion were also evaluated in the present study (data not
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shown). However, no encouraging results were achieved
when compared to those reached with reflectance
data.

The full models for external quality attributes presented
R% and R?, values above 0.87 (Table 2). The SEP was
higher than SEC for each color attribute; nonetheless,
SEP values was up to 20%, which suggest that the
models had a high performance, allowing the study of
their simplification.
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Figure 4: The regression coefficients of the full models for predicting: (a) internal as well as (b) external quality attributes of orange

fruit

The analysis correlation of optimal wavelengths for
external quality attributes (Table 3) showed that only the
wavelengths between 400-600 nm had a high correlation
(p<0.05), which could be related to the detection of ca-
rotenoids pigments in the samples. On the other hand, the
analysis of multiple linear regression revealed that for L*
parameter, the most of the regression coefficients were
significant, excepting for 400 nm (p>0.05). However, the
use of the regression coefficient for 400 nm in the simpli-
fied model should be considered since the correlation

analysis evidenced that it is strongly correlated with the
L* parameter (p<0.05). Meanwhile, all the regression
coefficients for a* and b* parameters and CI were highly
significant (p<0.05). On the other hand, the evaluation
of the simplified models for external quality attributes of
orange fruit (Figure 5, Table 4) revealed that these
presented a similar performance to their respective full
models (Table 2). Therefore, the simplified models
(Table 3) could be applied in the multispectral imaging
systems.
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Table 3: Correlation and multiple linear regression analysis for optimal wavelengths regarding external quality attributes of orange fruit

Quality Wavelength Correlation analysis Multiple linear regression analysis
attribute (nm) rvalue Fvalue Significance Coefficients Error tvalue Significance
Interception - - - 64.606 1.463 4417 0.000
400 0.687 51.91 0.000 19.550 11.376 1.72 0.091
L* 544 0.674 48.19 0.000 -7.586 2.451 -3.10 0.003
584 0.605 33.49 0.000 26.983 13.309 2.03 0.047
992 0.095 0.53 0.471 -34.449 3.628 -9.50 0.000
Interception - - - 11.233 1.689 6.65 0.000
400 0.474 16.77 0.000 -192.866 15379  -1254 0.000
496 0.620 36.24 0.000 237.242 18.057 13.14 0.000
a* 560 0.622 36.67 0.000 -88.857 9.358 -9.50 0.000
608 0.121 0.86 0.357 145.275 19.159 7.58 0.000
744 0.178 1.90 0.174 -129.130 24.281 -5.32 0.000
848 0.176 1.85 0.179 91.870 28.762 3.19 0.002
992 0.181 1.97 0.166 -61.303 15.096 -4.06 0.000
Interception - - - 65.058 1.578 41.22 0.000
416 0.676 48.84 0.000 95.046 6.860 13.86 0.000
b* 560 0.653 43.21 0.000 -40.980 4.488 -9.13 0.000
664 0.017 0.02 0.896 -111.594 12.037 -9.27 0.000
984 0.000 0.00 0.999 60.563 9.885 6.13 0.000
Interception - - - 2.978 0.468 6.36 0.000
400 0.504 19.790 0.000 -56.878 4.262 -13.35 0.000
496 0.624 37.062 0.000 65.724 5.012 13.11 0.000
Color Index 560 0.609 34.196 0.000 -25.599 2.598 -9.86 0.000
608 0.183 2.015 0.161 54.359 5.305 10.25 0.000
744 0.120 0.843 0.362 -50.252 6.519 -7.71 0.000
856 0.116 0.785 0.379 31.318 7.929 3.95 0.000
992 0.116 0.878 0.353 -18.178 4.369 -4.16 0.000
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Figure 5: Observed versus predicted values of external quality attributes using simplified models: (a) L* parameter, (b) a* parameter, (c) b*
parameter, and (d) color index
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Table 4: Performance of the simplified models for predicting color components (L*, a*, and b*) and color index in orange fruit

Quality attribute Number of Calibration Prediction

wavelengths R% SEC R%, SEP  SEP (%)
L* 4 0.862 1.2 0.888 15 20
a* 7 0.943 0.9 0.959 11 12
b* 4 0.888 1.2 0.925 0.3 20
Cl 7 0.947 0.2 0.974 0.3 9

R?,: Coefficient of determination of calibration; Rzp: Coefficient of determination in prediction; SEC: Standard Error of

Calibration; SEP: Standard Error of Prediction

Table 5: Data comparison between this study and similar previous studies performed on prediction of quality attributes of orange fruit

. . Spectral Orange Best prediction
Quality attribute Mode range (nm) variety Method level Reference
Hyperspectral imaging
TSS F 408-1117 Nanfen PCA R?,=0.996* Liu et al. (2007)
TSS R 400-1000 Navel ANN R2p=0.690* Guo et al. (2008)
TSS R%=0.274
TSSITA R 400-1000 Valencia PLSR R2p=0.297 This study
Cl R%=0.974
Spectroscopy
TSS R%=0.913
TA R 570-1850 Valencia PLSR R?.=0.637 Cayuela (2008)
pH R%=0.499
2 *
gﬁs Sanguinelli, F;zc"_g ?;’*
H cv=Y.
i R swam  JmOR ae moee cendem
TSSITA Navelate 2w=0.66*
Cl R%,=0.76*
PCA 2 _ " .

TSS R 350-1800 BPNN R*,=0.83 Liu et al. (2010)
¢l R'p=0.74* Magwaza et al
TSS R 780-2500 PLSR R%,=0.69* 9(2013) :
TA R22p=0.07*

| R°.=0.73*
TSS R 200-1100 PLSR R2,=0.76* Wang et al. (2014)

T chvzo.ss*
TSS R%,=0.927
TA R 450-2500 PLSR Rzp=0.929 Ncama et al. (2017)
TSSITA R?%,=0.958

*Converted from coefficient of correlation (r) to coefficient of determination (R?)
TSS: Total Soluble Solids; CI: Color Index; TA: Titratable Acidity; TSS/TA: Maturity index; R: Reflectance; I: Interactance; T: Transmittance;
F: Fluorescence; PLSR: Partial Least Squares Regression; PCA: Principal Components Analysis; BPNN: Back Propagation Neural Network;

ANN: Artificial Neural Network

Discussion

The samples showed a widely range of variation in
TSS, TA, and TSS/TA (Table 1) when compared to the
measurements reported by Ramful et al. (2011). The
color of the orange fruits varied from green to yellow
(Table 1), as expected for Valencia variety. Thus,
the variation of the quality attributes confirmed the
suitability of the selected samples for building successful
predictive models (EIMasry et al., 2013).

Statistical descriptors of the calibration set were similar
to those obtained for total samples (Table 1), indicating

that the built models embraced the range of variation of
total samples. Moreover, the calibration sets generally
covered the ranges of the prediction sets, suggesting that
the division of the sample was adequate (Dong et al.,
2016).

The intact and half samples showed peaks from 440 nm
to 640 nm, which could be attributed to carotenoid pig-
ments observed at 435 nm (Huang et al., 2014), 450 nm,
580 nm (Munera et al., 2017) and in the range of 400-
600 nm (Munera et al., 2018) in the other studies. The
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intact samples showed a peak at 672 nm, which could be
related to chlorophyll pigment reported at 673 nm (Zhu et
al., 2017), 675 nm (Peng and Lu, 2008), and 680 nm
(Munera et al., 2017). Other peaks were observed in
intact and half samples at 816 and 976 nm. The peak at
816 nm could be associated with acids and sugars since
acids were detected at 800 nm (Munera et al., 2018), and
sugars were identified at 835 nm (Zhu et al., 2017) and
840 nm (Xie et al., 2018). The peak detected at 976 nm
could be related to water and sugars since water was
detected at 960 nm (EIMasry et al., 2007), 970 nm
(Munera et al., 2018), and 976 nm (Zhu et al., 2017). On
the other hand, water and sugars were reported at 970 nm
(Teerachaichayut and Ho, 2017) and in the ranges of
960-980 nm (Dong et al., 2016) and 970-980 nm (Leiva-
Valenzuela et al., 2013). In particular, the last peaks were
difficult to observe in the intact samples when compared
to half samples. This behavior was expected as the com-
positional and structural differences between the peel and
pulp result in some difficulty in the extraction of spectral
data during hyperspectral imaging (Wang et al., 2014).

The full models for internal quality attributes reached
unacceptable predictive performance (Table 2) with
exception of the full model for TSS in half samples. The
study of simplification of these models suggested the loss
of fundamental information and could be the reason why
some authors had no reports of the simplified models
recommending the use of full models for industries
(Rodriguez-Pulido et al., 2014). In that sense, the full
model for TSS in half samples could be used as a
complementary assessment to traditional methods in a
noncontact and rapid way (Ma et al., 2018). In further
works, the building of simplified models for TSS and
other internal quality attributes in multispectral imaging
technologies should involve the exploration of the
spectral region of near infrared (>1000 nm). It provides
enhanced sensitivity to internal composition when
compared to the visible-near infrared region (400-1000
nm; Ma et al., 2018).

Hyperspectral imaging studies in orange fruit were
focused on the prediction of TSS (Table 5). The R2p for
TSS in intact orange fruit obtained in this study (0.274)
was lower than those reported for “Navel” orange by
hyperspectral reflectance imaging (0.691; Guo et al.,
2008) and for “Nanfen” orange fruit by hyperspectral
laser-induced fluorescence imaging (0.996; Liu et al.,
2007). This difference could be attributed to the fruit
variety and the hyperspectral imaging technique or
system setting. Hence, calibration of models by artificial
neural networks could be time-consuming and unpracti-
cal for recalibrations works and that laser-induced fluo-
rescence could cause damage to fruit (Liu et al., 2007),
compromising the practical application of the results.

Spectroscopy studies in orange fruit were focused on
predicting TSS, pH, TA, TSS/TA, and CI using mainly
the reflectance mode (Table 5). In general, good predict-
ing levels for internal quality attributes were reached by
spectroscopy technique, which could be attributed to the
use of near infrared region (>1000 nm). The prediction
level of ClI was better for hyperspectral imaging
(R%=0.974) when compared to the reached maximum
level by spectroscopy (R%,=0.76; Cayuela and Weiland,
2010), which demonstrated that the spectral region
of 400-1000 nm allows the obtaining of high-quality
information related to color of orange fruit.

Conclusion

Hyperspectral reflectance imaging technique (400-1000
nm) can be applied to predicting TSS in half orange fruit
and color (L*, a*, and b* parameters; and CI) in intact
orange fruit, in an objective and noncontact way. Full
models for predicting internal quality attributes in
intact orange fruit (TSS, pH, TA, TSS/TA) had low
performance. The full and simplified models for external
quality attributes had high performance, suggesting that
simplified models could be applied in a multispectral
reflectance imaging system for predicting color of orange
fruit. The results of this study can be used as a reference
in the implementation of multispectral technologies for
quality assurance of orange fruit. Further improvements
in the prediction of internal quality attributes in intact
orange fruit could be achieved in future studies by a
different spectral region (>1000 nm).
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