Volume 8, Issue 4 (December 2021)                   J. Food Qual. Hazards Control 2021, 8(4): 152-161 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roy D, Akhter S, Sarker A, Hossain M, Lyzu C, Mohanta L, et al . Tracing the Pig and Cattle Origin in Processed Food and Feed Products Targeting Mitochondrial 12S rRNA Gene. J. Food Qual. Hazards Control 2021; 8 (4) :152-161
URL: http://jfqhc.ssu.ac.ir/article-1-919-en.html
Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka-1205, Bangladesh , roydc1987@gmail.com
Abstract:   (1459 Views)
Background: Species identification in commercially processed food and feed products is one of the important issues. This study was conducted to develop a genetic method for the detection of pig and cattle species in processed food and feed products using newly designed species-specific primers targeting mitochondrial 12S rRNA gene fragments.
Methods: Two sets of specific primers were designed based on the 12S rRNA gene sequences of pig and cattle species from GenBank. The primers were validated by using the DNA extracted from nine different chordates, including pig, cattle, chicken, bata fish, bat, toad, African parrot, rat, and human origin. Annealing temperature ranging from 46-54 °C for 30 seconds and template DNA 1:10 serial dilutions ranging from 10 to 0.00001 ng/µl were employed for primer annealing and sensitivity analysis. Samples were analyzed using optimized Polymerase Chain Reaction (PCR) conditions.
Results: The most intense expected DNA bands of pig and cattle were produced at 50 °C. Under that optimized annealing temperature pig and cattle-specific primers did not anneal with the DNA of other chordates. Total extracted DNA 0.001 ng and 0.01 ng of pig and cattle respectively containing the mitochondrial DNA (mtDNA) was successfully detected.
Conclusion: These findings indicate that the newly designed primer pairs can be used to detect pig and cattle derivatives in various processed food and feed products.

DOI: 10.18502/jfqhc.8.4.8256
Full-Text [PDF 489 kb]   (473 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/07/29 | Accepted: 21/11/03 | Published: 21/12/29

1. Ali M.E., Kashif M., Uddin K., Hashim U., Mustafa S., Che Man Y.B. (2012). Species authentication methods in foods and feeds: the present, past, and future of halal forensics. Food Analytical Methods. 5: 935-955. [DOI: 10.1007/s12161-011-9357-3] [DOI:10.1007/s12161-011-9357-3]
2. Amaral J.S., Santos C.G., Melo V.S., Costa J., Oliveira M.B.P.P., Mafra I. (2015). Identification of duck, partridge, pheasant, quail, chicken and turkey meats by species-specific PCR assays to assess the authenticity of traditional game meat Alheira sausages. Food Control. 47: 190-195. [DOI: 10.1016/j.foodcont.2014.07.009] [DOI:10.1016/j.foodcont.2014.07.009]
3. Amorim A., Fernandes T., Taveira N. (2019). Mitochondrial DNA in human identification: a review. PeerJ. 7: e7314. [DOI: 10.7717/peerj.7314] [DOI:10.7717/peerj.7314] [PMID] [PMCID]
4. Analytical Methods Committee, AMCTB No 59. (2014). PCR - the polymerase chain reaction. Analytical Methods. 6: 333-336. [DOI: 10.1039/C3AY90101G] [DOI:10.1039/C3AY90101G] [PMID]
5. Barakat H., El-Garhy H.A.S., Moustafa M.M.A. (2014). Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes. Applied Microbiology and Biotechnology. 98: 9805-9816. [DOI: 10.1007/s00253-014-6084-x] [DOI:10.1007/s00253-014-6084-x] [PMID]
6. Bosworth C.M., Grandhi S., Gould M.P., LaFramboise T. (2017). Detection and quantification of mitochondrial DNA deletions from next-generation sequence data. BMC Bioinformatics. 18: 407. [DOI: 10.1186/s12859-017-1821-7] [DOI:10.1186/s12859-017-1821-7] [PMID] [PMCID]
7. Cahyadi M., Puruhita., Barido F.H., Hertanto B.S. (2018). Specific primer design of mitochondrial 12S rRNA for species identification in raw meats. IOP Conference Series: Earth and Environmental Science. 102: 012038. [DOI: 10.1088/1755-1315/102/1/012038] [DOI:10.1088/1755-1315/102/1/012038]
8. Che Man Y.B., Mustafa S., Khairil Mokhtar N.F., Nordin R., Sazili A.Q. (2012). Porcine-specific polymerase chain reaction assay based on mitochondrial D-loop gene for identification of pork in raw meat. International Journal of Food Properties. 15: 134-144. [DOI: 10.1080/10942911003754692] [DOI:10.1080/10942911003754692]
9. Cho A.R., Dong H.J., Cho S. (2014). Meat species identification using loop-mediated isothermal amplification assay targeting species-specific mitochondrial DNA. Korean Journal for Food Science of Animal Resources. 34: 799-807. [DOI: 10.5851/kosfa.2014.34.6.799] [DOI:10.5851/kosfa.2014.34.6.799] [PMID] [PMCID]
10. Costassa E.V., Iulini B., Mazza M., Acutis P., Maurella C., Meloni D., Pautasso A., Capucci L., Bozzetta E., Simmons M.M., Zanusso G., Pocchiari M., et al. (2016). Pathogenesis and transmission of classical and atypical BSE in cattle. Food Safety. 4: 130-134. [DOI: 10.14252/foodsafetyfscj.2016018] [DOI:10.14252/foodsafetyfscj.2016018] [PMID] [PMCID]
11. De Melo A.A., Nunes R., Telles M.P.D.C. (2021). Same information, new applications: revisiting primers for the avian COI gene and improving DNA barcoding identification. Organisms Diversity and Evolution. 21: 599-614. [DOI: 10.1007/s13127-021-00507-x] [DOI:10.1007/s13127-021-00507-x]
12. Di Pinto A., Bottaro M., Bonerba E., Bozzo G., Ceci E., Marchetti P., Mottola A., Tantillo G. (2015). Occurrence of mislabeling in meat products using DNA-based assay. Journal of Food Science and Technology. 52: 2479-2484. [DOI: 10.1007/ s13197-014-1552-y] [DOI:10.1007/s13197-014-1552-y] [PMID] [PMCID]
13. Fajardo V., González I., Rojas M., García T., Martín R. (2010). A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends in Food Science and Technology. 21: 408-421. [DOI: 10.1016/j.tifs.2010.06.002] [DOI:10.1016/j.tifs.2010.06.002]
14. Fang X., Zhang C. (2016). Detection of adulterated murine components in meat products by TaqMan© real-time PCR. Food Chemistry. 192: 485-490. [DOI: 10.1016/j.foodchem. 2015.07.020] [DOI:10.1016/j.foodchem.2015.07.020] [PMID]
15. Galal-Khallaf A. (2021). Multiplex PCR and 12S rRNA gene sequencing for detection of meat adulteration: a case study in the Egyptian markets. Gene. 764: 145062. [DOI: 10.1016/j. gene.2020.145062] [DOI:10.1016/j.gene.2020.145062] [PMID]
16. Hossain M.A.M., Ali M.E., Hamid S.B.A., Asing., Mustafa S., Desa M.N.M., Zaidul I.S.M. (2017). Targeting double genes in multiplex PCR for discriminating bovine, buffalo and porcine materials in food chain. Food Control. 73: 175-184. [DOI: 10.1016/j.foodcont.2016.08.008] [DOI:10.1016/j.foodcont.2016.08.008]
17. Hutasoit I., Ramadhani Munthe F., Wiyah M., Nasution H., Pranata A.W. (2021). Real-time PCR to identify porcine DNA in prosthodontic materials. Cumhuriyet Dental Journal. 24: 216-223. [DOI: 10.7126/cumudj.887101] [DOI:10.7126/cumudj.887101]
18. Islam A., Halder J., Rahman A.M., Ud-Daula A., Uddin S., Hossain M.K., Jahan N., Alim A., Bhuyan A.A., Rubaya., Hasan M., Alam J. (2021). Meat origin differentiation by polymerase chain reaction-restriction fragment length polymorphism. International Journal of Food Properties. 24: 1022-1033. [DOI: 10.1080/10942912.2021.1953068] [DOI:10.1080/10942912.2021.1953068]
19. Izadpanah M., Mohebali N., Elyasi Gorji Z., Farzaneh P., Vakhshiteh F., Shahzadeh Fazeli S.A. (2018). Simple and fast multiplex PCR method for detection of species origin in meat products. Journal of Food Science and Technology. 55: 698-703. [DOI: 10.1007/s13197-017-2980-2] [DOI:10.1007/s13197-017-2980-2] [PMID] [PMCID]
20. Jadav K., Rajput N., Shrivastav A.B., Mandal S., Shrivastav G. (2014). Application of 12S rRNA gene sequence for identification of Indian wild pig (Sus scrofa cristatus). Journal of Meat Science and Technology. 2: 79-84
21. Johnson R. (2014). Food fraud and "economically motivated adulteration" of food and food ingredients. Congressional Research Service. Washington D.C.
22. Kalle E., Kubista M., Rensing C. (2014). Multi-template polymerase chain reaction. Biomolecular Detection and Quantification. 2: 11-29. [DOI: 10.1016/j.bdq.2014.11.002] [DOI:10.1016/j.bdq.2014.11.002] [PMID] [PMCID]
23. Karabasanavar N., Girish P.S., Kumar D., Singh S.P. (2017). Detection of beef adulteration by mitochondrial D-loop based species-specific polymerase chain reaction. International Journal of Food Properties. 20: 2264-2271. [DOI: 10.1080/10942912.2017.1369103] [DOI:10.1080/10942912.2017.1369103]
24. Khanzadeh F., Khaghaninia S., Maleki-Ravasan N., Koosha M., Oshaghi M.A. (2020). Molecular detection of Dirofilaria spp. and host blood-meal identification in the Simulium turgaicum complex (Diptera: Simuliidae) in the Aras River Basin, northwestern Iran. Parasites and Vectors. 13: 548. [DOI: 10.1186/s13071-020-04432-4] [DOI:10.1186/s13071-020-04432-4] [PMID] [PMCID]
25. Kumar A., Kumar R.R., Sharma B.D., Gokulakrishnan P., Mendiratta S.K., Sharma D. (2015). Identification of species origin of meat and meat products on the DNA basis: a review. Critical Reviews in Food Science and Nutrition. 55: 1340-1351. [DOI: 10.1080/10408398.2012.693978] [DOI:10.1080/10408398.2012.693978] [PMID]
26. Lee W., Johnson J., Gough D.J., Donoghue J., Cagnone G.L.M., Vaghjiani V., Brown K.A., Johns T.G., St. John J.C. (2015). Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny. Cell Death and Disease. 6: e1664. [DOI: 10.1038/cddis.2015.34] [DOI:10.1038/cddis.2015.34] [PMID] [PMCID]
27. Lorenz T.C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments. 63: e3998. [DOI: 10.3791/3998] [DOI:10.3791/3998] [PMID] [PMCID]
28. Nehal N., Choudhary B., Nagpure A., Gupta R.K. (2021). DNA barcoding: a modern age tool for detection of adulteration in food. Critical Reviews in Biotechnology. 41: 767-791. [DOI: 10.1080/07388551.2021.1874279] [DOI:10.1080/07388551.2021.1874279] [PMID]
29. Picard M. (2021). Blood mitochondrial DNA copy number: what are we counting? Mitochondrion. 60: 1-11. [DOI: 10.1016/j. mito.2021.06.010] [DOI:10.1016/j.mito.2021.06.010] [PMID]
30. Ricardo P.C., Françoso E., Arias M.C. (2020). Mitochondrial DNA intra-individual variation in a bumblebee species: a challenge for evolutionary studies and molecular identification. Mitochondrion. 53: 243-254. [DOI: 10.1016/j.mito.2020. 06.007] [DOI:10.1016/j.mito.2020.06.007] [PMID]
31. Rojas M., González I., Pavón M.Á., Pegels N., Hernández P.E., García T., Martín R. (2011). Application of a real-time PCR assay for the detection of ostrich (Struthio camelus) mislabelling in meat products from the retail market. Food Control. 22: 523-531. [DOI: 10.1016/j.foodcont.2010.09.039] [DOI:10.1016/j.foodcont.2010.09.039]
32. Spychaj A., Szalata M., Słomski R., Pospiech E. (2016). Identification of bovine, pig and duck meat species in mixtures and in meat products on the basis of the mtDNA cytochrome oxidase subunit I (COI) gene sequence. Polish Journal of Food and Nutrition Sciences. 66: 31-36. [DOI: 10.1515/pjfns-2015-0051] [DOI:10.1515/pjfns-2015-0051]
33. Starčič Erjavec M. (2019). Annealing temperature of 55°C and specificity of primer binding in PCR reactions. Synthetic Biology-New Interdisciplinary Science. [DOI: 10.5772/ intechopen.85164] [DOI:10.5772/intechopen.85164]
34. Tibola C.S., Da Silva S.A., Dossa A.A., Patrício D.I. (2018). Economically motivated food fraud and adulteration in Brazil: incidents and alternatives to minimize occurrence. Journal of Food Science. 83: 2028-2038. [DOI: 10.1111/1750-3841.14279] [DOI:10.1111/1750-3841.14279] [PMID]
35. Torres J.A.A. (2018). The mitochondrial DNA copy number used as biomarker. International Journal of Molecular Biology. 3: 115-117. [DOI: 10.15406/ijmboa.2018.03.00063] [DOI:10.15406/ijmboa.2018.03.00063]
36. Vaithiyanathan S., Kulkarni V.V. (2016). Species identification of cattle and buffalo fat through PCR assay. Journal of Food Science and Technology. 53: 2077-2082. [DOI: 10.1007/s13197-016-2198-8] [DOI:10.1007/s13197-016-2198-8] [PMID] [PMCID]
37. Wang L., Hang X., Geng R. (2019). Molecular detection of adulteration in commercial buffalo meat products by multiplex PCR assay. Food Science and Technology. 39: 344-348. [DOI: 10.1590/fst.28717] [DOI:10.1590/fst.28717]
38. Zhang X., Armani A., Giusti A., Wen J., Fan S., Ying X. (2021). Molecular authentication of crocodile dried food products (meat and feet) and skin sold on the Chinese market: implication for the European market in the light of the new legislation on reptile meat. Food Control. 124: 107884. [DOI: 10.1016/j.foodcont.2021.107884] [DOI:10.1016/j.foodcont.2021.107884]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb