Volume 9, Issue 2 (June 2022)                   J. Food Qual. Hazards Control 2022, 9(2): 58-63 | Back to browse issues page


XML Print


Department of Biological Sciences, Confluence University of Science and Technology, Osara, Kogi State, Nigeria , danapeh@gmail.com
Abstract:   (713 Views)
Background: Ginger which serves as both spices and medicine is susceptible to mycotoxin contamination. This research determined the incidence of major mycotoxins, including Aflatoxins (AFs), Ochratoxin A (OTA), and Fumonisins (FBs) in Nigerian ginger sampled from two main ginger producing states of Nigeria.
Methods: Totally, 105 ginger samples were collected including freshly harvested and dried sliced forms. These samples were collected randomly across five stations; farms, aggregating points, processing points, open markets, and storage facilities during the rainy season in June, 2019. The samples were analysed using the Enzyme-Linked Immunosorbent Assay (ELISA) and read by a microplate reader.
Results: Incidence of the studied mycotoxins was 80.9, 68.6, and 90.5% for AFs, OTA, and FBs, respectively. While there were low levels of OTA and FBs across the various sample forms. Mean concentrations of AFs were 1.77±1.86 µg/kg (0.00-8.68) and 6.46±6.71 µg/kg (0.00-36.72) in fresh and dried ginger samples, respectively. The results revealed higher levels of AF in storage samples (9.04±10.72 µg/kg) and market samples (4.05±4.41 µg/kg) compared to other samples. However, no significant difference (p>0.05) was observed in the level of contamination across the sample sources.
Conclusion: Freshly harvested ginger samples were less contaminated than dried ginger. Among the studied toxins, AF was found as a potential health concern in Nigerian ginger.

DOI: 10.18502/jfqhc.9.2.10642
Full-Text [PDF 319 kb]   (465 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/03/13 | Accepted: 21/10/01 | Published: 22/06/27

References
1. Apeh D.O., Mark O., Onoja V.O., Awotunde M., Ojo T., Christopher P., Makun H.A. (2021). Hydrogen cyanide and mycotoxins: their incidence and dietary exposure from cassava products in Anyigba, Nigeria. Food Control. 121: 107663. [DOI: 10.1016/j.foodcont.2020.107663] [DOI:10.1016/j.foodcont.2020.107663]
2. Bolger M., Coker R.D., DiNovi M., Gaylor D., Gelderblom W., Olsen M., Paster N., Riley R.T., Shephard G., Speijers G.J.A. (2001). Fumonisins. In: safety evaluation of certain mycotoxins in food / prepared by the 56th meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series. 47: 103-279. WHO, FAO Food and Nutrition Paper 74, Geneva, Switzerland.
3. Dawlatana M., Coker R.D., Nagler M.J., Wild C.P., Hassan M.S., Blunden G. (2002). The occurrence of mycotoxins in key commodities in Bangladesh: surveillance results from 1993 to 1995. Journal of Natural Toxins. 11: 379-386.
4. European Commission. (2012). Commission Regulation (EU) No 594/2012 of 5 July 2012 amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Official Journal of the European :union:. L 176/43-45.
5. Food and Agriculture Organization (FAO). (2020). FAOstat. URL: http://www.fao.org/faostat/en/#data/QC. Accessed on 13 September 2020.
6. Hammami W., Fiori S., Al Thani R., Kali N.A., Balmas V., Migheli Q., Jaoua S. (2014). Fungal and aflatoxin contamination of marketed spices. Food Control. 37: 177-181. [DOI: 10.1016/j. foodcont.2013.09.027] [DOI:10.1016/j.foodcont.2013.09.027]
7. Han Y.A., Song C.W., Koh W.S., Yon G.H., Kim Y.S., Ryu S.Y., Kwon H.J., Lee K.H. (2013). Anti-inflammatory effects of the Zingiber officinale roscoe constituent 12-dehydrogingerdione in lipopolysaccharide-stimulated raw 264.7 cells. Phytotherapy Research. 27: 1200-1205. [DOI: 10.1002/ptr.4847] [DOI:10.1002/ptr.4847] [PMID]
8. Ho S.-C., Chang K.-S., Lin C.-C. (2013). Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chemistry. 141: 3183-3191. [DOI: 10.1016/j.foodchem. 2013.06.010] [DOI:10.1016/j.foodchem.2013.06.010] [PMID]
9. International Agency for Research on Cancer (IARC) (2012). A review of human carcinogens: chemical agents and related occupations. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon, France.
10. Irkin R., Korukluoglu M. (2007). Control of Aspergillus niger with garlic, onion, and leek extracts. African Journal of Biotechnology. 6: 384-387.
11. Jeswal P., Kumar D. (2015). Mycobiota and natural incidence of aflatoxins, ochratoxin A, and citrinin in Indian spices confirmed by LC-MS/MS. International Journal of Microbiology. 2015. [DOI: 10.1155/2015/242486] [DOI:10.1155/2015/242486] [PMID] [PMCID]
12. Kabak B., Dobson A.D.W. (2017). Mycotoxins in spices and herbs-an update. Critical Reviews in Food Science and Nutrition. 57: 18- 34. [DOI: 10.1080/10408398.2013.772891] [DOI:10.1080/10408398.2013.772891] [PMID]
13. Leong S.-L.L., Hocking A.D., Scott E.S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. International Journal of Food Microbiology. 110: 209-216. [DOI: 10.1016/j. ijfoodmicro.2006.04.005] [DOI:10.1016/j.ijfoodmicro.2006.04.005] [PMID]
14. Lippolis V., Irurhe O., Porricelli A.C.R., Cortese M., Schena R., Imafidon T., Oluwadun A., Pascale M. (2017). Natural co-occurrence of aflatoxins and ochratoxin A in ginger (Zingiber officinale) from Nigeria. Food Control. 73: 1061-1067. [DOI: 10.1016/j.foodcont.2016.10.026] [DOI:10.1016/j.foodcont.2016.10.026]
15. Musaiger A.O., Al-Jedah J.H., D'souza R. (2008). Occurrence of contaminants in foods commonly consumed in Bahrain. Food Control. 19: 854-861. [DOI: 10.1016/j.foodcont.2007.08.011] [DOI:10.1016/j.foodcont.2007.08.011]
16. Nigerian export promotion council (NPEC) (2018). URL: https://nepc.gov.ng/importer/nigeria-product/ginger/.
17. Omotayo O.P., Omotayo A.O., Babalola O.O., Mwanza M. (2019). Comparative study of aflatoxin contamination of winter and summer ginger from the North West Province of South Africa. Toxicology Reports. 6: 489-495. [DOI: 10.1016/j. toxrep.2019.05.011] [DOI:10.1016/j.toxrep.2019.05.011] [PMID] [PMCID]
18. Onyedum S.C., Adefolalu F.S., Muhammad H.L., Apeh D.O., Agada M.S., Imienwanrin M.R., Makun H.A. (2020). Occurrence of major mycotoxins and their dietary exposure in North-Central Nigeria staples. Scientific African. 7: e00188. [DOI: 10.1016/j.sciaf.2019.e00188] [DOI:10.1016/j.sciaf.2019.e00188]
19. Ostry V., Malir F., Toman J., Grosse Y. (2017). Mycotoxins as human carcinogens-the IARC monographs classification. Mycotoxin Research. 33: 65-73. [DOI: 10.1007/s12550-016-0265-7] [DOI:10.1007/s12550-016-0265-7] [PMID]
20. Reddy K.R.N., Salleh B., Saad B., Abbas H.K., Abel C.A., Shier W.T. (2010). An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews. 29: 3-26. [DOI: 10.3109/15569541003598553] [DOI:10.3109/15569541003598553]
21. Speijers G.J.A., Speijers M.H.M. (2004). Combined toxic effects of mycotoxins. Toxicology Letters. 153: 91-98. [DOI: 10.1016/j. toxlet.2004.04.046] [DOI:10.1016/j.toxlet.2004.04.046] [PMID]
22. Srinivasan K. (2017). Ginger rhizomes (Zingiber officinale): a spice with multiple health beneficial potentials. PharmaNutrition. 5: 18-28. [DOI: 10.1016/j.phanu.2017.01.001] [DOI:10.1016/j.phanu.2017.01.001]
23. Stoner G.D. (2013). Ginger: is it ready for prime time?. Cancer Prevention Research. 6: 257-262. [DOI: 10.1158/1940-6207. CAPR-13-0055] [DOI:10.1158/1940-6207.CAPR-13-0055] [PMID]
24. Thirumala-Devi K., Mayo M.A., Reddy G., Emmanuel K.E., Larondelle Y., Reddy D.V.R. (2001). Occurrence of ochratoxin A in black pepper, coriander, ginger and turmeric in India. Food Additives and Contaminants. 18: 830-835. [DOI: 10.1080/02652030110044921] [DOI:10.1080/02652030110044921]
25. Tridge. (2020). Analysis of the ginger Industry in Nigeria. URL: http://cdn.tridge.com/pdf/Nigeria+-+Ginger_updated.pdf. Accessed 24 February 2022.
26. Wei C.-K., Tsai Y.-H., Korinek M., Hung P.-H., El-Shazly M., Cheng Y.-B., Wu Y.-C., Hsieh T.-J., Chang F.-R. (2017). 6-paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. International Journal of Molecular Sciences. 18: 168. [DOI: 10.3390/ijms18010168] [DOI:10.3390/ijms18010168] [PMID] [PMCID]
27. Zhang M., Viennois E., Prasad M., Zhang Y., Wang L., Zhang Z., Han M.K., Xiao B., Xu C., Srinivasan S., Merlin D. (2016). Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 101: 321-340. [DOI: 10.1016/j.biomaterials.2016.06.018] [DOI:10.1016/j.biomaterials.2016.06.018] [PMID] [PMCID]
28. Zinedine A., Brera C., Elakhdari S., Catano C., Debegnach F., Angelini S., De Santis B., Faid M., Benlemlih M., Minardi V., Miraglia M. (2006). Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control. 17: 868-874. [DOI: 10.1016/j.foodcont.2005.06.001] [DOI:10.1016/j.foodcont.2005.06.001]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.