Volume 9, Issue 2 (June 2022)                   J. Food Qual. Hazards Control 2022, 9(2): 64-77 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akgün B, Genç M, Genç S, Ayşar Güzelsoy N, Tosunoglu H, Hamzaoğlu M, et al . Impact of Aqueous Extracts of Turkish Wild Edible Plants on Acrylamide Formation in Potato Crisps. J. Food Qual. Hazards Control 2022; 9 (2) :64-77
URL: http://jfqhc.ssu.ac.ir/article-1-955-en.html
Central Research Institute of Food and Feed Control, Bursa, Türkiye , banu.akgun@tarimorman.gov.tr
Abstract:   (1022 Views)
 Background: Antioxidants have the ability to influence acrylamide formation. This study aimed to evaluate the impact of aqueous extracts of six wild edible plants on the acrylamide formation in potato crisps.
Methods: Sliced potatoes were submerged in the plant extracts at a concentration of 0, 5, and 10 g/L for 1, 5, and 10 min. Before being fried and their acrylamide levels were calculated by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).
Results: Aqueous extract of ribwort plantain was found the most effective trial at 10 g/L for 5 min because it reduced acrylamide concentration by 57% compared to control without significantly affecting potato crisps’ sensory and color parameters (p>0.05). The aqueous extract of shepherd’s-needle yielded the highest Total Antioxidant Capacity (TAC) in 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid; ABTS) and Cupric ion Reducing Antioxidant Capacity (CUPRAC) assay, the highest Total Phenolic Content (TPC), and Total Flavonoid Content (TFC). Similarly, no significant correlation was found between TAC, TPC, and TFC of watery plant extracts with acrylamide level of potato crisps produced after immersion of these extracts (at 5 g/L for 5 min).
Conclusion: Wild edible plants have the potential to be used for acrylamide reduction in potato crisps.

DOI: 10.18502/jfqhc.9.2.10643
Full-Text [PDF 855 kb]   (405 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/01/04 | Accepted: 22/05/05 | Published: 22/06/27

References
1. Akgün B., Arıcı M. (2019). Evaluation of acrylamide and selected parameters in some Turkish coffee brands from the Turkish market. Food Additives and Contaminants: Part A. 36: 548-560. [DOI: 10.1080/19440049.2019.1586454] [DOI:10.1080/19440049.2019.1586454] [PMID]
2. Akgün B., Arıcı M., Çavuş F., Karataş A.B., Ekşi Karaağaç H., Uçurum H.Ö. (2021). Application of l-asparaginase to produce high-quality Turkish coffee and the role of precursors in acrylamide formation. Journal of Food Processing and Preservation. 45: e15486. [DOI: 10.1111/jfpp.15486] [DOI:10.1111/jfpp.15486]
3. Albu S., Joyce E., Paniwnyk L., Lorimer J.P., Mason T.J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry. 11: 261-265. [DOI: 10.1016/j.ultsonch.2004.01.015] [DOI:10.1016/j.ultsonch.2004.01.015] [PMID]
4. Altin G., Bildik F., Kasapoğlu K.N., Genç S., Genç M., Özçelik B. (2021). Identification of the functional food potency of çalkama: a traditional recipe with edible Mediterranean wild greens from Turkish cuisine. Mediterranean Journal of Nutrition and Metabolism. 14: 207-218. [DOI: 10.3233/MNM-200525] [DOI:10.3233/MNM-200525]
5. Apak R., Güçlü K., Özyürek M., Çelik S.E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta. 160: 413-419. [DOI: 10.1007/s00604-007-0777-0] [DOI:10.1007/s00604-007-0777-0]
6. Araujo M.M.V., Caneppele M.A.B., Bianchini M.D.G.A. (2016). Total alcoholic acidity and pH tests as quality parameters in stored soybean grains. Pesquisa Agropecuária Tropical. 46: 191-196. [DOI: 10.1590/1983-40632016v4638707] [DOI:10.1590/1983-40632016v4638707]
7. Association of Official Analytical Chemists (AOAC). (1979). Saccharides (major) in corn syrup - liquid chromatographic method. 979.23. In: AOAC Official Methods of Analysis. Gaithersburg, MD, USA.
8. Ayas F., Vuran F.A., Yuksel K., Cinar O., Tugrul Ay S., Karabak S. (2017). The antioxidant capacities and consumption per capita of edible wild species and local varieties collected from Turkey within the GEF-Funded biodiversity for food and nutrition (BFN) project. ANADOLU Journal of Aegean Agricultural Research Institute. 27: 46-53.
9. Bahadori M.B., Sarikurkcu C., Kocak M.S., Calapoglu M., Uren M.C., Ceylan O. (2020). Plantago lanceolata as a source of health-beneficial phytochemicals: phenolics profile and antioxidant capacity. Food Bioscience. 34: 100536. [DOI: 10.1016/j.fbio.2020.100536] [DOI:10.1016/j.fbio.2020.100536]
10. Basuny A.M.M., Mostafa D.M.M., Shaker A.M. (2009). Relationship between chemical composition and sensory evaluation of potato chips made from six potato varieties with emphasis on the quality of fried sunflower oil. World Journal of Dairy and Food Sciences. 4: 193-200.
11. Beara I.N., Lesjak M.M., Orčić D.Z., Simin N.Đ., Četojević-Simin D.D., Božin B.N., Mimica-Dukić N.M. (2012). Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Science and Technology. 47: 64-70. [DOI: 10.1016/j.lwt. 2012.01.001] [DOI:10.1016/j.lwt.2012.01.001]
12. Bonwick G.A., Birch C.S. (2019). Chapter 1: European regulation of process contaminants in food. Mitigating Contamination from Food Processing. 1-16. [DOI: 10.1039/9781788016438-00001] [DOI:10.1039/9781788016438-00001]
13. Bouyahya A., Dakka N., Talbaoui A., El Moussaoui N., Abrini J., Bakri Y. (2018). Phenolic contents and antiradical capacity of vegetable oil from Pistacia lentiscus (L). Journal of Materials and Environmental Sciences. 9: 1518-1524. [DOI: 10.26872/jmes.2018.9.5.167]
14. Brighente I.M.C., Dias M., Verdi L.G., Pizzolatti M.G. (2007). Antioxidant activity and total phenolic content of some Brazilian species. Pharmaceutical Biology. 45: 156-161. [DOI: 10.1080/13880200601113131] [DOI:10.1080/13880200601113131]
15. Butsat S., Siriamornpun S. (2016). Effect of solvent types and extraction times on phenolic and flavonoid contents and antioxidant activity in leaf extracts of Amomum chinense C.. International Food Research Journal. 23: 180-187
16. Cai Y., Zhang Z., Jiang S., Yu M., Huang C., Qiu R., Zou Y., Zhang Q., Ou S., Zhou H., Wang Y., Bai W., et al. (2014). Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. Journal of Hazardous Materials. 268: 1-5. [DOI: 10.1016/j.jhazmat.2013.12.067] [DOI:10.1016/j.jhazmat.2013.12.067] [PMID]
17. Carpenter R.P., Lyon D.H., Hasdell T.A. (2000). Guidelines for sensory analysis in food product development and quality control. 2nd edition. Springer, New York. [DOI: 10.1007/978-1-4615-4447-0] . [DOI:10.1007/978-1-4615-4447-0]
18. Chrząszcz M., Krzemińska B., Celiński R., Szewczyk K. (2021). Phenolic composition and antioxidant activity of plants belonging to the Cephalaria (Caprifoliaceae) genus. Plants. 10: 952. [DOI: 10.3390/plants10050952] [DOI:10.3390/plants10050952] [PMID] [PMCID]
19. Ciesarová Z., Suhaj M., Horváthová J. (2008). Correlation between acrylamide contents and antioxidant capacities of spice extracts in a model potato matrix. Journal of Food and Nutrition Research. 47: 1-5.
20. Cornara L., Smeriglio A., Frigerio J., Labra M., Di Gristina E., Denaro M., Mora E., Trombetta D. (2018). The problem of misidentification between edible and poisonous wild plants: reports from the Mediterranean area. Food and Chemical Toxicology. 119: 112-121. [DOI: 10.1016/j.fct.2018.04.066] [DOI:10.1016/j.fct.2018.04.066] [PMID]
21. De Wilde T., De Meulenaer B., Mestdagh F., Govaert Y., Vandeburie S., Ooghe W., Fraselle S., Demeulemeester K., Peteghem C.V., Calus A., Degroodt J.-M., Verhé R. (2005). Influence of storage practices on acrylamide formation during potato frying. Journal of Agricultural and Food Chemistry. 53: 6550-6557. [DOI: 10.1021/jf050650s] [DOI:10.1021/jf050650s] [PMID]
22. Dhanani T., Shah S., Gajbhiye N.A., Kumar S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry. 10: S1193-S1199. [DOI: 10.1016/j.arabjc.2013. 02.015] [DOI:10.1016/j.arabjc.2013.02.015]
23. Dirar A.I., Alsaadi D.H.M., Wada M., Mohamed M.A., Watanabe T., Devkota H.P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany. 120: 261-267. [DOI: 10.1016/j.sajb.2018. 07.003] [DOI:10.1016/j.sajb.2018.07.003]
24. EFSA CONTAM (EFSA Panel on Contaminants in the Food Chain) (2015). Scientific opinion on acrylamide in food. EFSA Journal. 13: 4104. [DOI: 10.2903/j.efsa.2015. 4104] [DOI:10.2903/j.efsa.2015.4104]
25. El-Desouky T.A., May A.M., Lamyaa E.-S. (2015). Reduction of acrylamide formation in potato chips by aqueous extract of roselle. Journal of Drug Delivery and Therapeutics. 5: 26-32. [DOI: 10.22270/jddt.v5i5.1137] [DOI:10.22270/jddt.v5i5.1137]
26. European Commission (EC). (2017). Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official Journal of the European :union:. L 304/24-44.
27. Gökmen V., Palazoğlu T.K. (2008). Acrylamide formation in foods during thermal processing with a focus on frying. Food and Bioprocess Technology. 1: 35-42. [DOI: 10.1007/s11947-007-0005-2] [DOI:10.1007/s11947-007-0005-2]
28. Ibrahim R.M., Nawar I., Yousef M.I., El-Sayed M.I., Hassanein A. (2019). Protective role of natural antioxidants against the formation and harmful effects of acrylamide in food. Trends in Applied Sciences Research. 14: 41-55. [DOI: 10.3923/tasr. 2019.41.55] [DOI:10.3923/tasr.2019.41.55]
29. Jiang S., Li H., Ma H., Liao L., Wang Z., Fu X., Wang C. (2011). Antioxidant activities of selected Chinese medicinal and edible plants. International Journal of Food Sciences and Nutrition. 62: 441-444. [DOI: 10.3109/09637486.2010.547178] [DOI:10.3109/09637486.2010.547178] [PMID]
30. Jin C., Wu X., Zhang Y. (2013). Relationship between antioxidants and acrylamide formation: a review. Food Research International. 51: 611-620. [DOI: 10.1016/j.foodres.2012.12.047] [DOI:10.1016/j.foodres.2012.12.047]
31. Jung M.Y., Choi D.S., Ju J.W. (2003). A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries. Journal of Food Science. 68: 1287-1290. [DOI: 10.1111/j.1365-2621.2003.tb09641.x] [DOI:10.1111/j.1365-2621.2003.tb09641.x]
32. Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.-P., Pihlaja K., Kujala T.S., Heinonen M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry. 47: 3954-3962. [DOI: 10.1021/jf990146l] [DOI:10.1021/jf990146l] [PMID]
33. Kalita D., Holm D.G., Jayanty S.S. (2013). Role of polyphenols in acrylamide formation in the fried products of potato tubers with colored flesh. Food Research International. 54: 753-759. [DOI: 10.1016/j.foodres.2013.08.023] [DOI:10.1016/j.foodres.2013.08.023]
34. Kamiloglu S., Capanoglu E. (2015). Polyphenol content in figs (Ficus carica L.): effect of sun-drying. International Journal of Food Properties. 18: 521-535. [DOI: 10.1080/10942912. 2013.833522] [DOI:10.1080/10942912.2013.833522]
35. Kamiloglu S., Capanoglu E., Yilmaz O., Duran A.F., Boyacioglu D. (2014). Investigating the antioxidant potential of Turkish herbs and spices. Quality Assurance and Safety of Crops and Foods. 6: 151-158. [DOI: 10.3920/QAS2012.237] [DOI:10.3920/QAS2012.0237]
36. Karaagac H.E., Şahan Y. (2020). Comparison of phenolics, antioxidant capacity and total phenol bioaccessibility of Ribes spp. grown in Turkey. Food Science and Technology. 40: 512-520. [DOI: 10.1590/fst.31219] [DOI:10.1590/fst.31219]
37. Karaca O.B., Yıldırım O., Çakıcı C. (2015). An evaluation on their relation to health and wild plant meals, wild edible plants in gastronomy tourism. Journal of Tourism and Gastronomy Studies. 3: 27-42. [Turkish with English abstract]
38. Khanam U.K.S., Oba S., Yanase E., Murakami Y. (2012). Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. Journal of Functional Foods. 4: 979-987. [DOI: 10.1016/j.jff.2012.07.006] [DOI:10.1016/j.jff.2012.07.006]
39. Kim H.-J., Lee K.J., Ma K.-H., Cho Y.-H., Lee S., Lee D.-J., Chung J.-W. (2015). Effect of tomato leaf extracts on anti-inflammatory and antioxidant activities. Journal of the Korean Society of International Agriculture. 27: 529-535. [DOI: 10.12719/KSIA.2015.27.4.529] [Korean with English abstract] [DOI:10.12719/KSIA.2015.27.4.529]
40. Kök A., Kurnaz A., Kurnaz H.A., Karahan S. (2020). Use of aegean herbs in local cuisines. Journal of Tourism Intelligence and Smartness. 3: 152-168. [Turkish with English abstract]
41. Kukurová K., Constantin O.E., Dubová Z., Tobolková B., Suhaj M., Nystazou Z., Rapeanu G., Ciesarová Z. (2015).Acrylamide content and antioxidant capacity in thermally processed fruit products. Potravinárstvo: Scientific Journal for Food Industry. 9: 90-94. [DOI: 10.5219/423] [DOI:10.5219/423]
42. Liyanage D.W.K., Yevtushenko D.P., Konschuh M., Bizimungu B., Lu Z.-X. (2021). Processing strategies to decrease acrylamide formation, reducing sugars and free asparagine content in potato chips from three commercial cultivars. Food Control. 119: 107452. [DOI: 10.1016/j.foodcont.2020. 107452] [DOI:10.1016/j.foodcont.2020.107452]
43. Manzocco L., Anese M., Nicoli M.C. (1998). Antioxidant properties of tea extracts as affected by processing. LWT-Food Science and Technology. 31: 694-698. [DOI: 10.1006/ fstl.1998.0491] [DOI:10.1006/fstl.1998.0491]
44. Mesías M., Morales F.J. (2015). Acrylamide in commercial potato crisps from Spanish market: trends from 2004 to 2014 and assessment of the dietary exposure. Food and Chemical Toxicology. 81: 104-110. [DOI: 10.1016/j.fct.2015.03.031] [DOI:10.1016/j.fct.2015.03.031] [PMID]
45. Mestdagh F., De Wilde T., Fraselle S., Govaert Y., Ooghe W., Degroodt J.-M., Verhe ́R., Peteghem C.V., De Meulenaer B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT - Food Science and Technology. 41: 1648-1654. [DOI: 10.1016/j.lwt.2007.10.007] [DOI:10.1016/j.lwt.2007.10.007]
46. Morales G., Jimenez M., Garcia O., Mendoza M.R., Beristain C.I. (2014). Effect of natural extracts on the formation of acrylamide in fried potatoes. LWT - Food Science and Technology. 58: 587-593. [DOI: 10.1016/j.lwt.2014.03.034] [DOI:10.1016/j.lwt.2014.03.034]
47. National Cancer Institute (NIH) (2017). Acrylamide and cancer risk. URL: https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/acrylamide-fact-sheet.
48. Orphanides A., Goulas V., Gekas V. (2013). Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech Journal of Food Sciences. 31: 509-513. [DOI: 10.17221/526/2012-CJFS] [DOI:10.17221/526/2012-CJFS]
49. Özen T. (2010). Antioxidant activity of wild edible plants in the Black Sea region of Turkey. Grasas y Aceites. 61: 86-94. [DOI: 10.3989/gya.075509] [DOI:10.3989/gya.075509]
50. Pedreschi F., Kaack K., Granby K. (2008). The effect of asparaginase on acrylamide formation in French fries. Food Chemistry. 109: 386-392. [DOI: 10.1016/j.foodchem.2007. 12.057] [DOI:10.1016/j.foodchem.2007.12.057] [PMID]
51. Republic of Türkiye Ministry of Agriculture and Forestry (2018a). Kimyasal ve fiziksel analizlerde metot validasyonu/ verifikasyonu rehberi. URL: https://www.tarimorman. gov.tr/GKGM/Belgeler/DB_Gida_Kont/Kimyasal_Fiziksel_Val_Ver_Rehberi.pdf. Accessed 20 October 2021.
52. Republic of Türkiye Ministry of Agriculture and Forestry (2018b). Kimyasal ve fiziksel analizlerde ölçüm belirsizliği rehberi. URL: https://www.tarimorman.gov.tr/GKGM/Belgeler/ DB_Gida_Kont/Kimyasal_Fiziksel_OB_Rehberi.pdf. Accessed 20 October 2021.
53. Republic of Türkiye Ministry of Agriculture and Forestry. (2022). Plant list. URL: https://kms.kaysis.gov.tr/Home/Goster/ 187209. Accessed 25 February 2022.
54. Roach J.A., Andrzejewski D., Gay M.L., Nortrup D., Musser S.M. (2003). Rugged LC-MS/MS survey analysis for acrylamide in foods. Journal of Agricultural and Food Chemistry. 51: 7547-7554. [DOI: 10.1021/jf0346354] [DOI:10.1021/jf0346354] [PMID]
55. Sarikurkcu C., Locatelli M., Mocan A., Zengin G., Kirkan B. (2020). Phenolic profile and bioactivities of Sideritis perfoliata L.: the plant, its most active extract, and its broad biological properties. Frontiers in Pharmacology. 10: 1642. [DOI: 10.3389/fphar.2019.01642] [DOI:10.3389/fphar.2019.01642] [PMID] [PMCID]
56. Sarikurkcu C., Targan S., Ozer M.S., Tepe B. (2016). Fatty acid composition, enzyme inhibitory, and antioxidant activities of the ethanol extracts of selected wild edible plants consumed as vegetables in the Aegean region of Turkey. International Journal of Food Properties. 20: 560-572. [DOI: 10.1080/ 10942912.2016.1168837] [DOI:10.1080/10942912.2016.1168837]
57. Schunko C., Grasser S., Vogl C.R. (2015). Explaining the resurgent popularity of the wild: motivations for wild plant gathering in the biosphere reserve grosses Walsertal, Austria. Journal of Ethnobiology and Ethnomedicine. 11: 55. [DOI: 10.1186/s13002-015-0032-4] [DOI:10.1186/s13002-015-0032-4] [PMID] [PMCID]
58. Singh R.P., Chidambara Murthy K.N., Jayaprakasha G.K. (2002). Studies on the antioxidant activity of pomegranate (Punicagranatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry. 50: 81-86. [DOI: 10.1021/jf010865b] [DOI:10.1021/jf010865b] [PMID]
59. Stadler R.H., Scholz G. (2004). Acrylamide: an update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutrition Reviews. 62: 449-467. [DOI: 10.1111/j.1753-4887.2004. tb00018.x] [DOI:10.1111/j.1753-4887.2004.tb00018.x] [PMID]
60. Stojanovska S., Tomovska J. (2015). Factors influence to formation of acrylamide in food. Journal of Hygienic Engineering and Design. 13: 10-15.
61. Sulas L., Re G.A., Bullitta S., Piluzza G. (2016). Chemical and productive properties of two Sardinian milk thistle (Silybum marianum (L.) Gaertn.) populations as sources of nutrients and antioxidants. Genetic Resources and Crop Evolution. 63: 315-326. [DOI: 10.1007/s10722-015-0251-5] [DOI:10.1007/s10722-015-0251-5]
62. Sultana B., Anwar F., Ashraf M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 14: 2167-2180. [DOI: 10.3390/molecules14062167] [DOI:10.3390/molecules14062167] [PMID] [PMCID]
63. Taeymans D., Wood J., Ashby P., Blank I., Studer A., Stadler R.H., GondéP., Eijck P., Lalljie S., Lingnert H., Lindblom M., Matissek R., et al. (2004). A review of acrylamide: an industry perspective on research, analysis, formation, and control. Critical Reviews in Food Science and Nutrition. 44: 323-347. [DOI: 10.1080/10408690490478082] [DOI:10.1080/10408690490478082] [PMID]
64. Tajner-Czopek A., Kita A., Rytel E. (2021). Characteristics of French fries and potato chips in aspect of acrylamide content-methods of reducing the toxic compound content in ready potato snacks. Applied Sciences. 11: 3943. [DOI: 10.3390/ app11093943] [DOI:10.3390/app11093943]
65. Taskın T., Bitis L. (2016). In vitro antioxidant activity of eight wild edible plants in Bursa province of Turkey. Farmacia. 64:5.
66. Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis. 19: 669-675. [DOI: 10.1016/j.fca. 2006.01.003] [DOI:10.1016/j.jfca.2006.01.003]
67. Wang X., Xu L. (2014). Influence factors on the formation of acrylamide in the amino acid/sugar chemical model system. Journal of Food and Nutrition Research. 2: 344-348. [DOI: 10.12691/jfnr-2-7-3] [DOI:10.12691/jfnr-2-7-3]
68. Wilson K.M., Rimm E.B., Thompson K.M., Mucci L.A. (2006). Dietary acrylamide and cancer risk in humans: a review. Journal für Verbraucherschutz und Lebensmittelsicherheit. 1: 19-27. [DOI: 10.1007/s00003-006-0005-6] [DOI:10.1007/s00003-006-0005-6]
69. Xu X., An X. (2016). Study on acrylamide inhibitory mechanism in maillard model reaction: effect of p-coumaric acid. Food Research International. 84: 9-17. [DOI: 10.1016/j.foodres. 2016.03.020] [DOI:10.1016/j.foodres.2016.03.020]
70. Zhang Y., Chen J., Zhang X., Wu X., Zhang Y. (2007). Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries. Journal of Agricultural and Food Chemistry. 55: 523-528. [DOI: 10.1021/jf062568i] [DOI:10.1021/jf062568i] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb