Volume 9, Issue 3 (September 2022)                   J. Food Qual. Hazards Control 2022, 9(3): 147-159 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kortei N, Agbemeseli P, Annan T. Detection of Toxicogenic Molds in Some Legumes Sold in Local Markets of Ho, Ghana. J. Food Qual. Hazards Control 2022; 9 (3) :147-159
URL: http://jfqhc.ssu.ac.ir/article-1-972-en.html
Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana , nkkortei@uhas.edu.gh
Abstract:   (337 Views)
Background: Legumes are plants that contain edible seeds and belong to the family Leguminosae with varying nutritional benefits to humans and animals. This study aimed to detect and identify toxicogenic molds on some legumes purchased from two local markets in Ho Municipality, Ghana.
Methods: A total of 36 samples, including cowpea (n=9), soybean (n=9), brown bean (n=9), and Bambara bean (n=9) were randomly obtained from 2 local markets in the Volta region of Ghana. Culturing of the legume seeds were done on mycological media using serial dilution technique. Fungal species occurrence was also determined. Statistical Package for Social Sciences (SPSS) version 26 was used to analyze the data.
Results: Fungal counts on cowpea, soybean, brown beans, and Bambara beans ranged between 1.91 and 2.84 log Colony Forming Units (CFU)/g on both media. There were no statistically significant differences (p>0.05) in the samples from the different vendors. The Moisture Content (MC) ranged between 6.74 and 12.15%, pH ranged between 6.27±0.03-6.53±0.02. A total of 13 fungal species belonging to 7 genera were isolated on SDA and OGYEA media; Aspergillus species (A. niger, A. terreus, A. flavus, A. fumigatus, A. ochraceus, A. parasiticus), Fusarium species (F. oxysporum), Trichoderma harzianum, Rhizopus species (R. stolonifer), Penicillium species (P. digitatum, P. verucosum), Rhodotorula mucilaginosa, and Mucor racemosus were recorded on the legumes.
Conclusion: The presence of some mycotoxigenic fungi in legumes examined in this study showed the potential health hazards in the local people of Ho, Ghana.

DOI: 10.18502/jfqhc.9.3.11153
Full-Text [PDF 670 kb]   (176 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/10/04 | Accepted: 22/03/11 | Published: 22/09/24

References
1. Achaglinkame M.A., Opoku N., Amagloh F.K. (2017). Aflatoxin contamination in cereals and legumes to reconsider usage as complementary food ingredients for Ghanaian infants: a review. Journal of Nutrition and Intermediary Metabolism.10: 1-7. [DOI: 10.1016/j.jnim.2017.09.001] [DOI:10.1016/j.jnim.2017.09.001]
2. Adjovi Y.C.S., Agnandji P., Ayi-Fanou L., Sanni A. (2019). Isolation of Aspergillus section Flavi and determination of aflatoxins in Bambara groundnut sold in Cotonou main markets (Benin). Journal of Bioscience and Applied Research. 5: 486-494. [DOI: 10.21608/JBAAR.2019.115437] [DOI:10.21608/jbaar.2019.115437]
3. Afolabi C.G., Ezekiel C.N., Ogunbiyi A.E., Oluwadairo O.J., Sulyok M., Krska R. (2020). Fungi and mycotoxins in cowpea (Vigna unguiculata L) on Nigerian markets. Food Additives and Contaminants: Part B. 13: 52-58. [DOI: 10.1080/19393210.2019.1690590] [DOI:10.1080/19393210.2019.1690590] [PMID]
4. Agunbiade S.O., Ojezele M.O. (2010). Quality evaluation of instant breakfast meals fabricated from maize, sorghum soybean and yam bean (Sphenostylis stenocarpa). World Journal of Dairy and Food Sciences. 5: 67-72.
5. Annor G.A., Ma Z., Boye J.I. (2014). Crops-legumes. In: Clark S., Jung S., Lamsal B. (Editors). Food processing: principles and applications. Wiley-Blackwell, New York. pp: 305-337. [DOI: 10.1002/9781118846315.ch14] [DOI:10.1002/9781118846315.ch14]
6. Bbosa G.S., Kitya D., Odda J., Ogwal-Okeng J. (2013). Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health. 5: 14-34. [DOI: 10.4236/health. 2013.510A1003] [DOI:10.4236/health.2013.510A1003]
7. Bhat R., Ramakrishna Y., Beedu S., Munshi K. (1989). Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat products in Kashmir Valley, India. The Lancet. 333: 35-37. [DOI: 10.1016/S0140-6736(89) 91684-X] [DOI:10.1016/S0140-6736(89)91684-X] [PMID]
8. Bouchenak M., Lamri-Senhadji M. (2013). Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. Journal of Medicinal Food. 16: 185-198. [DOI: 10.1089/jmf.2011.0238] [DOI:10.1089/jmf.2011.0238] [PMID]
9. Castells M., Marín S., Sanchis V., Ramos A.J. (2008). Distribution of fumonisins and aflatoxins in corn fractions during industrial cornflake processing. International Journal of Food Microbiology. 123: 81-87. [DOI: 10.1016/j. ijfoodmicro.2007.12.001] [DOI:10.1016/j.ijfoodmicro.2007.12.001] [PMID]
10. Castillo M.D., González H.H.L., Martínez E.J., Pacin A.M., Resnik S.L. (2004). Mycoflora and potential for mycotoxin production of freshly harvested black bean from the Argentinean main production area. Mycopathologia, 158: 107-112. [DOI: 10.1023/b:myco.0000038426.05215.89] [DOI:10.1023/B:MYCO.0000038426.05215.89] [PMID]
11. Chakuri D. (2018). Technical efficiency analysis of groundnut production in Ghana: a bayesian approach. University Of Ghana. URL: http://ugspace.ug.edu.gh/handle/123456789/ 29130.
12. Chang J.C.S., Foarde K.K., Vanosdell D.W. (1995). Growth evaluation of fungi (Penicillium and Aspergillus spp.) on ceiling tiles. Atmospheric Environment. 29: 2331-2337. [DOI: 10. 1016/1352-2310(95)00062-4] [DOI:10.1016/1352-2310(95)00062-4]
13. Da Cunha K.C., Sutton D.A., Fothergill A.W., Gené J., Cano J., Madrid, H., Crous P.W.,Guarro J. (2013). In vitro antifungal susceptibility and molecular identity of 99 clinical isolates of the opportunistic fungal genus Curvularia. Diagnostic Microbiology and Infectious Disease. 76: 168-174. [DOI: 10.1016/j.diagmicrobio.2013.02.034] [DOI:10.1016/j.diagmicrobio.2013.02.034] [PMID]
14. De La Parte E.M., Pérez T.C., García D. (2014). Fungi associated with Phaseolus vulgaris L. seeds cultivated in Cuba. Biotecnología Vegetal. 14: 99-105. [Spanish with English abstract]
15. Domijan A.-M., Peraica M., Žlender V., Cvjetković B., Jurjević Ž., Topolovec-Pintarić S., Ivić D. (2005). Seed-borne fungi and ochratoxin A contamination of dry beans (Phaseolus vulgaris L.) in the Republic of Croatia. Food and Chemical Toxicology. 43: 427-432. [DOI: 10.1016/j.fct.2004.12.002] [DOI:10.1016/j.fct.2004.12.002] [PMID]
16. Duan C.-X., Wang X.-M., Zhu Z.-D., Wu X.-F. (2007). Testing of seedborne fungi in wheat germplasm conserved in the national crop genebank of China. Agricultural Sciences in China. 6: 682-687. [DOI: 10.1016/S1671-2927(07)60100-X] [DOI:10.1016/S1671-2927(07)60100-X]
17. Eaton D.L., Gallagher E.P. (1994). Mechanisms of aflatoxin carcinogenesis. Annual Review of Pharmacology and Toxicology. 34: 135-172. [DOI: 10.1146/annurev.pa34. 040194.001031] [DOI:10.1146/annurev.pa.34.040194.001031] [PMID]
18. Edema R. (1995). Investigations into factors affecting disease occurrence and farmer control strategies on cowpea in Uganda. M.Sc. thesis. Makerere University, Kampala, Uganda.
19. Embaby E.M., Abdel-Galil M.M. (2006). Seed borne fungi and mycotoxins associated with some legume seeds in Egypt. Journal of Applied Sciences Research. 2: 1064-1071.
20. Embaby E.M., Reda M., Abdel-Wahhab M.A., Omara H., Mokabel A.M. (2013). Occurrence of toxigenic fungi and mycotoxins in some legume seeds. Journal of Agricultural Technology. 9: 151-164.
21. Fagbohun E.D., Faleye O.S. (2012). The nutritional and mycoflora changes during storage of groundnut (Arachis hypogea). International Journal of Agronomy and Agricultural Research. 2: 15-22.
22. Haddon W.F., Schatzki T.F. (2002). Rapid, non-destructive selection of peanuts for high aflatoxin content by soaking and tandem mass spectrometry. Journal of Agricultural and Food Chemistry. 50: 3062-3069. [DOI: 10.1021/jf010848m] [DOI:10.1021/jf010848m] [PMID]
23. Hanson L.A., Zahn E.A., Wild S.R., Döpfer D., Scott J., Stein C. (2012). Estimating global mortality from potentially foodborne diseases: an analysis using vital registration data. Population Health Metrics. 10: 5. [DOI: 10.1186/1478-7954-10-5] [DOI:10.1186/1478-7954-10-5] [PMID] [PMCID]
24. Hathout A.S., Abel-Fattah S.M., Abou-Sree Y.H., Fouzy A.S.M. (2020). Incidence and exposure assessment of aflatoxins and ochratoxin A in Egyptian wheat. Toxicology Reports. 7: 867-873. [DOI: 10.1016/j.toxrep.2020.07.003] [DOI:10.1016/j.toxrep.2020.07.003] [PMID] [PMCID]
25. Hathout A.S., Aly S.E. (2014). Biological detoxification of mycotoxins: a review. Annals of Microbiology. 64: 905-919. [DOI: 10.1007/s13213-014-0899-7] [DOI:10.1007/s13213-014-0899-7]
26. He Q., Riley R.T., Sharma R.P. (2002). Pharmacological antagonism of fumonisin B1 cytotoxicity in porcine renal epithelial cells (LLC-PK1): a model for reducing fumonisin-induced nephrotoxicity in vivo. Pharmacology and Toxicology. 90: 268-277. [DOI: 10.1034/j.1600-0773. 2002. 900507.x] [DOI:10.1034/j.1600-0773.2002.900507.x] [PMID]
27. Henning A.S. (2005). Seed pathology and treatment: an overview. Embrapa National Soy Research Center. Londrina, Brazil. [Portuguese with English abstract]
28. Houssou P.A., Ahohuendo B.C., Fandohan P., Kpodo K., Hounhouigin D.J., Jakobsen M. (2009). Natural infection of cowpea (Vigna unguiculata (L.) Walp.) by toxigenic fungi and mycotoxin contamination in Benin, West Africa. Journal of Stored Products Research. 45: 40-44. [DOI: 10.1016/ j.jspr.2008.07.002] [DOI:10.1016/j.jspr.2008.07.002]
29. Jolly C.M., Bayard B., Awuah R.T., Fialor S.C., Williams J.T. (2009). Examining the structure of awareness and perceptions of groundnut aflatoxin among Ghanaian health and agricultural professionals and its influence on their actions. The Journal of Socio-Economics. 38: 280-287. [DOI: 10. 1016/j.socec.2008.05.013] [DOI:10.1016/j.socec.2008.05.013]
30. Kew M.C. (2013). Aflatoxins as a cause of hepatocellular carcinoma. Journal of Gastrointestinal and Liver Diseases. 22: 305-310.
31. Kortei N.K., Annan T., Akonor P.T., Richard S.A., Annan H.A., Wiafe-Kwagyan M., Ayim-Akonor M., Akpaloo P.G. (2021). Aflatoxins in randomly selected groundnuts (Arachis hypogaea) and its products from some local markets across Ghana: human risk assessment and monitoring. Toxicology Reports. 8: 186-195. [DOI: 10.1016/j.toxrep.2021.01.002] [DOI:10.1016/j.toxrep.2021.01.002] [PMID] [PMCID]
32. Kortei N.K., Annan T., Quansah L., Aboagye G., Akonor P.T., Tettey C. (2020). Microbiological quality evaluation of ready-to-eat mixed vegetable salad, food ingredients and some water samples from a restaurant in Accra: a case study. African Journal of Food, Agriculture, Nutrition and Development. 20: 16669-16688. [DOI: 10.18697/ajfand. 94.18805] [DOI:10.18697/ajfand]
33. Kortei N.K., Asiedu P., Annan T., Deku J.G., Boakye A.A. (2021). Fungal diversity of "solom" a Ghanaian traditional beverage of millet (Pennisetum glaucum). Food Science and Nutrition. 9: 811-821. [DOI: 10.1002/fsn3.2045] [DOI:10.1002/fsn3.2045] [PMID] [PMCID]
34. Kortei N.K., Odamtten G.T., Obodai M., Wiafe-Kwagyan M. (2018). Mycofloral profile and the radiation sensitivity (D10 values) of solar dried and gamma irradiated Pleurotus ostreatus (Jacq. Ex. Fr.) Kummer fruitbodies stored in two different packaging materials. Food Science and Nutrition. 6: 180-188. [DOI: 10.1002/fsn3.545] [DOI:10.1002/fsn3.545] [PMID] [PMCID]
35. Kortei N.K., Tetteh R.A., Wiafe-Kwagyan M., Amon D.N.K., Odamtten G.T. (2022). Mycobiota profile, phenology, and potential toxicogenic and pathogenic species associated with stored groundnuts (Arachis hypogaea L.) from the Volta region, Ghana. Food Science and Nutrition. 10: 888-902. [DOI: 10.1002/fsn3.2719] [DOI:10.1002/fsn3.2719] [PMID] [PMCID]
36. Kouris-Blazos A., Belski R. (2016). Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pacific Journal of Clinical Nutrition. 25: 1-17. [DOI: 10. 6133/apjcn.2016.25.1.23].
37. Madrid H., Da Cunha K.C., Gené J., Dijksterhuis J., Cano J., Sutton D.A., Crous P.W. (2014). Novel Curvularia species from clinical specimens. Persoonia - Molecular Phylogeny and Evolution of Fungi. 33: 48-60. [DOI: 10.3767/ 003158514X683538] [DOI:10.3767/003158514X683538] [PMID]
38. Manjula K., Hell K., Fandohan P., Abass A., Bandyopadhyay R. (2009). Aflatoxin and fumonisin contamination of cassava products and maize grain from markets in Tanzania and republic of the Congo. Toxin Reviews. 28: 63-69. [DOI: 10.1080/15569540802462214] [DOI:10.1080/15569540802462214]
39. Maphosa Y., Jideani V.A. (2017). The role of legumes in human nutrition. In: Hueda M.C. (Editor). Functional food - improve health through adequate food. Intech, Rijeka, Croatia. pp: 103-121. [DOI: 10.5772/intechopen.69127] [DOI:10.5772/intechopen.69127]
40. Marcenaro D., Valkonen J.P.T. (2016). Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. Plos One. 11: e0168662. [DOI: 10.1371/ journal.pone.0168662] [DOI:10.1371/journal.pone.0168662] [PMID] [PMCID]
41. Minamor A.A., Appiagyei B.A. (2017). Detection and enumeration of moulds on some legumes and a cereal grain from two local markets and two shopping malls in the Accra Metropolis. Microbiology Research Journal International. 18. [DOI: 10.9734/MRJI/2017/21883] [DOI:10.9734/MRJI/2017/21883] [PMID]
42. MoFA-SRID. (2016). Agriculture in Ghana: facts and figures (2015). Ministry of Food and Agriculture (MoFA), Statistics, Research and Information Directorate (SRID). URL: https://mofa.gov.gh/site/images/pdf/AGRICULTURE-IN-GHANA-Facts-and-Figures-2015.pdf.
43. Mupunga I., Mngqawa P., Katerere D.R. (2017). Peanuts, aflatoxins and undernutrition in children in Sub-Saharan Africa. Nutrients. 9: 1287. [DOI: 10.3390/nu9121287] [DOI:10.3390/nu9121287] [PMID] [PMCID]
44. Mzungu I., Hamisu H., Umar K. (2018). Evaluation of moulds contamination of cereals and legumes sold in Dutsinma metropolis and their aflatoxin production potential. Fudma Journal of Sciences. 2: 94-98.
45. Njobeh P.B., Dutton M.F., Koch S.H., Chuturgoon A., Stoev S., Seifert K. (2009). Contamination with storage fungi of human food from Cameroon. International Journal of Food Microbiology. 135: 193-198. [DOI: 10.1016/j.ijfoodmicro. 2009.08.001] [DOI:10.1016/j.ijfoodmicro.2009.08.001] [PMID]
46. Odamtten G.T., Nartey L.K., Wiafe-Kwagyan M., Anyebuno G., Kyei-Baffour V. (2018). Resident microbial load, toxigenic potential and possible quality control measures of six imported seasoning powders on the Ghanaian market. Journal of Nutritional Health and Food Engineering. 8: 24-35. [DOI: 10.15406/jnhfe.2018.08.00252] [DOI:10.15406/jnhfe.2018.08.00252]
47. Ogundipe A.A., Ogunniyi A., Olagunju K., Asaleye A.J. (2019). Poverty and income inequality in rural Agrarian household of southwestern Nigeria: the gender perspective. The Open Agriculture Journal. 13: 51-57. [DOI: 10.2174/ 1874331501913010051] [DOI:10.2174/1874331501913010051]
48. Olagunju O.F. (2019). Incidence of mycotoxigenic fungi during processing and storage of bambara groundnut (Vigna subterranea) composite flour. Durban University of Technology, Durban, South Africa.
49. Onyemelukwe G.C., Ogoina D., Ibiam G.E., Ogbadu G.H. (2012). Aflatoxins in body fluids and food of Nigerian children with protein-energy malnutrition. African Journal of Food, Agriculture, Nutrition and Development. 12: 6553-6566. [DOI: 10.18697/ajfand.53.10420] [DOI:10.18697/ajfand.53.10420]
50. Oteng-Frimpong R., Sriswathi M., Ntare B.R., Dakora F.D. (2015). Assessing the genetic diversity of 48 groundnut (Arachis hypogaea L.) genotypes in the Guinea savanna agro-ecology of Ghana, using microsatellite-based markers. African Journal of Biotechnology. 14: 2484-2493. [DOI: 10.5897/ AJB2015.14770] [DOI:10.5897/AJB2015.14770]
51. Oyelami O.A., Maxwell S.M., Adelusola K.A., Aladekoma T.A., Oyelese, A.O. (1997). Aflatoxins in the lungs of children with kwashiorkor and children with miscellaneous diseases in Nigeria. Journal of Toxicology and Environmental Health. 51: 623-628. [DOI: 10.1080/00984109708984048] [DOI:10.1080/00984109708984048] [PMID]
52. Ozturkoglu-Budak S. (2016). Occurrence of foodborne pathogens and molds in Turkish foods. Turkish Journal of Agriculture - Food Science and Technology. 4: 498-503. [DOI: 10.24925/ turjaf.v4i6.498-503.621] [DOI:10.24925/turjaf.v4i6.498-503.621]
53. Peay K.G., Bruns T.D. (2014). Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytologist. 204: 180-191. [DOI: 10.1111/nph.12906] [DOI:10.1111/nph.12906] [PMID]
54. Peraica M., Radić B., Lucić A., Pavlović M. (1999). Toxic effects of mycotoxins in humans. Bulletin of the World Health Organization. 77: 754-766.
55. Pleadin J., Frece J., Markov K. (2019). Mycotoxins in food and feed. In: Toldrá F (Editor). Advances in food and nutrition research. Elsevier Science. Amsterdam, Netherlands. 89: 297-345. [DOI: 10.1016/bs.afnr.2019.02.007] [DOI:10.1016/bs.afnr.2019.02.007] [PMID]
56. Popoola A., Adeoti A.Y.A., Idakwo P.Y. (2010). Incidence of moulds in some varieties of stored cowpea and peanuts in Maiduguri Nigeria. ASSET: An International Journal of Agricultural Sciences, Science, Environment and Technology (Series A). 3: 163-169.
57. Rebello C.J., Greenway F.L., Finley J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews. 15: 392-407. [DOI: 10.1111/obr.12144] [DOI:10.1111/obr.12144] [PMID]
58. Reddy K.R.N., Nurdijati S.B., Salleh B. (2010). An overview of plant-derived products on control of mycotoxigenic fungi and mycotoxins. Asian Journal of Plant Sciences. 9: 126-133. [DOI: 10.3923/ajps.2010.126.133] [DOI:10.3923/ajps.2010.126.133]
59. Rheeder J.P., Marasas W.F.O., Vismer H.F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology. 68: 2101-2105. [DOI: 10.1128/AEM.68.5.2101-2105.2002] [DOI:10.1128/AEM.68.5.2101-2105.2002] [PMID] [PMCID]
60. Sahab A.F., Amin H.A., Ziedan S.H. (2016). Seed borne fungal pathogens associated with common Egyptian seeds and their efficiency to produce saponin hydrolase enzyme. International Journal of ChemTech Research. 9: 299-306.
61. Saleem A., Ebrahim M.K. (2014). Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. Journal of Taibah University for Science. 8: 90-97. [DOI: 10.1016/j.jtusci.2013.09.002] [DOI:10.1016/j.jtusci.2013.09.002]
62. Samson R.A., Hoekstra E.S., Frisvad J.S., Filtenborg O. (1995). Methods for the detection and isolation of food-borne fungi. In: Samson R.A., Hoekstra E.S., Frisvad J.C., Filtenborg O (Editors). Introduction to foodborne fungi. Centraalbureau voor Schimelcultures, The Netherlands. pp: 235-242.
63. Samson R.A., Hoekstra E.S., Lund F., Filtenborg O., Frisvad J.C. (2004). Methods for the detection, isolation and characterisation of food-borne fungi. In: Samson R.A., Hoekstra E.S., Frisvad J.C. (Editors). Introduction to food-and airborne fungi. Centraalbureau voor Schimmelcultures, The Netherlands. pp: 283-297.
64. Samson R.A., Van Reenen-Hoekstra E.S. (1988). Introduction to food-borne fungi. 3rd edition. Centraalbureau voor Schimmelcultures, Baarn, The Netherlands.
65. Senghor L.A., Ortega-Beltran A., Atehnkeng J., Callicott K.A., Cotty P.J., Bandyopadhyay R. (2020). The atoxigenic biocontrol product Aflasafe SN01 is a valuable tool to mitigate aflatoxin contamination of both maize and groundnut cultivated in Senegal. Plant Disease. 104: 510-520. [DOI: 10.1094/PDIS-03-19-0575-RE] [DOI:10.1094/PDIS-03-19-0575-RE] [PMID]
66. Soriano J.M., Rubini A., Morales-Suarez-Varela M., Merino-Torres J.F., Silvestre D. (2020). Aflatoxins in organs and biological samples from children affected by kwashiorkor, marasmus and marasmic-kwashiorkor: a scoping review. Toxicon. 185: 174-183 [DOI: 10.1016/j.toxicon.2020.07.010] [DOI:10.1016/j.toxicon.2020.07.010] [PMID]
67. Staniak M., Księżak J., Bojarszczuk J. (2014). Mixtures of legumes with cereals as a source of feed for animals. In: Pilipavicius V. (Editor). Organic agriculture towards sustainability. Intech, Rijeka, Croatia. pp: 123-145. [DOI: 10.5772/58358] [DOI:10.5772/58358] [PMCID]
68. Taye W., Ayalew A., Chala A., Dejene M. (2016). Aflatoxin B1 and total fumonisin contamination and their producing fungi in fresh and stored sorghum grain in East Hararghe, Ethiopia. Food Additives and Contaminants: Part B. 9: 237-245. [DOI: 10.1080/19393210.2016.1184190] [DOI:10.1080/19393210.2016.1184190] [PMID]
69. Temba M.C., Njobeh P.B., Kayitesi E. (2017). Storage stability of maize-groundnut composite flours and an assessment of aflatoxin B1 and ochratoxin A contamination in flours and porridges. Food Control. 71: 178-186. [DOI: 10.1016/j. foodcont.2016.06.033] [DOI:10.1016/j.foodcont.2016.06.033]
70. Torres A.M., Barros G.G., Palacios S.A., Chulze S.N., Battilani P. (2014). Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Research International. 62: 11-19. [DOI: 10.1016/j.foodres.2014.02. 023] [DOI:10.1016/j.foodres.2014.02.023]
71. Turner P.C., Moore S.E., Hall A.J., Prentice A.M., Wild C.P. (2003). Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environmental Health Perspectives. 111: 217-220. [DOI: 10.1289/ehp.5753] [DOI:10.1289/ehp.5753] [PMID] [PMCID]
72. Wagacha J.M., Muthomi J.W. (2008). Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. International Journal of Food Microbiology, 124: 1-12. [DOI: 10.1016/j.ijfoodmicro. 2008.01.008] [DOI:10.1016/j.ijfoodmicro.2008.01.008] [PMID]
73. Wang Z.G., Feng J.N., Tong Z. (1993). Human toxicosis caused by moldy rice contaminated with fusarium and T-2 toxin. Biomedical and Environmental Sciences: BES. 6: 65-70.
74. Weyman-Kaczmarkowa W., Pędziwilk Z. (2000). The development of fungi as affected by pH and type of soil, in relation to the occurrence of bacteria and soil fungistatic activity. Microbiological Research. 155: 107-112. [DOI: 10.1016/S0944-5013(00)80045-2] [DOI:10.1016/S0944-5013(00)80045-2] [PMID]
75. Wild C.P., Montesano R. (2009). A model of interaction: aflatoxins and hepatitis viruses in liver cancer aetiology and prevention. Cancer Letters. 286: 22-28. [DOI: 10.1016/j. canlet.2009.02.053] [DOI:10.1016/j.canlet.2009.02.053] [PMID]
76. World Health Organization., International Agency for Research on Cancer. (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 56. World Health Organization, Geneva, Switzerland.
77. Yamanaka T. (2003). The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia. 95: 584-589. [DOI: 10.1080/15572536.2004. 11833062] [DOI:10.1080/15572536.2004.11833062] [PMID]
78. Yu J., Ehrlich K.C. (2011). Aflatoxin biosynthetic pathway and pathway genes. In: Guevara-Gonzalez R.G. (Editor). Aflatoxins - biochemistry and molecular biology. Intech, Rijeka, Croatia. pp: 41-66. [DOI: 10.5772/23034] [DOI:10.5772/23034]
79. Zain M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society. 15: 129-144. [DOI: 10.1016/j.jscs.2010.06.006] [DOI:10.1016/j.jscs.2010.06.006]
80. Zelaya M.J., González H.H.L., Resnik S.L., Pacin A.M., Salas M.P., Martíinez M.J. (2013). Mycobiota and potential mycotoxin contamination of soybean RR in different production areas in Argentina. International Research Journal of Plant Science. 4: 133-143.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb