Volume 5, Issue 1 (March 2018)                   J. Food Qual. Hazards Control 2018, 5(1): 29-32 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghourchian S, Douraghi M, Baghani A, Soltan Dallal M. Bacillus cereus Assessment in Dried Vegetables Distributed in Tehran, Iran . J. Food Qual. Hazards Control 2018; 5 (1) :29-32
URL: http://jfqhc.ssu.ac.ir/article-1-394-en.html
Food Microbiology Research Center/ Division of Food Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran , soltanda@sina.tums.ac.ir
Abstract:   (4227 Views)
Background: Bacillus cereus is one of the important agents of the food-borne diseases worldwide. In the present study, the dried vegetable samples distributed in Tehran, Iran were evaluated in order to isolation, identification, and enumeration of B. cereus.
Methods: A total of 140 samples containing open and packed dried vegetables were randomly purchased from different areas of Tehran, Iran from March to August 2015. Dried vegetable samples were equally divided into seven groups, including dill, parsley, coriander, tarragon, mint, his, and pot roast. After culturing of samples, isolated B. cereus colonies were enumerated and identified using biochemical tests. The statistical tests were done by SPSS 16 (Chicago, IL, USA) software.
Results: Totally, 44 out of 140 (31.4%) dried vegetable samples were contamintaed with B. cereus. The B. cereus contamination were found in 25 out of 70 (35.7%) and 19 out of 70 (27.1%) open and packed dried vegetable samples, respectively. There was no statistically significant difference (p>0.05) between contamination rate of B. cereus in open and packed dried vegetable samples. Also, contamination rate of B. cereus was not significantly different (p>0.05) among various kinds of vegetable samples. 
Conclusion: Our study showed that dried vegetables sampled from Tehran, capital of Iran were contaminated with B. cereus. More researches are required in order to evaluate the prevalence of B. cereus contamination in raw and fresh vegetable samples consumed in the country.

DOI:
10.29252/jfqhc.5.1.29
 
Full-Text [PDF 410 kb]   (1253 Downloads)    
Type of Study: Original article | Subject: Special
Received: 17/09/02 | Accepted: 17/12/13 | Published: 18/03/16

References
1. Berthold-Pluta A., Pluta A., Garbowska M. (2015). The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microbial Pathogenesis. 82: 7-14. [DOI:10.1016/j.micpath.2015.03.015]
2. Bottone E.J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviwes. 23: 382-398. [DOI:10.1128/CMR.00073-09]
3. Choma C., Guinebretiere M.H., Carlin F., Schmitt P., Velge P., Granum P.E., Nguyen‐The C. (2000). Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. Journal of Applied Microbiology. 88: 617-625. [DOI:10.1046/j.1365-2672.2000.00998.x]
4. Clavel T., Carlin F., Dargaignaratz C., Lairon D., Nguyen‐The C., Schmitt P. (2007). Effects of porcine bile on survival of Bacillus cereus vegetative cells and haemolysin BL enterotoxin production in reconstituted human small intestine media. Journal Applied Microbiology. 103: 1568-1575. [DOI:10.1111/j.1365-2672.2007.03410.x]
5. Deilami K.Z., Nasiri S.S.H. (2016). Isolation of Bacillus cereus from foods and studying the cytotoxicity of them on vero cells. Quarterly Journal of Biological Sciences. 9: 69-77.
6. Ehling‐Schulz M., Fricker M., Scherer S. (2004). Bacillus cereus, the causative agent of an emetic type of food‐borne illness. Molecular Nutrition and Food Research. 48: 479-487. [DOI:10.1002/mnfr.200400055]
7. Flores-Urbán K.A., Natividad-Bonifacio I., Vazquez-Quinones C.R., Vázquez-Salinas C., Quiones-Ramirez E.I. (2014). Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico City. Journal of Food Protection. 77: 2144-2147. [DOI:10.4315/0362-028X.JFP-13-479]
8. Forghani F., Langaee T., Eskandari M., Seo K.H., Chung M.J., Oh D.H. (2015). Rapid detection of viable Bacillus cereus emetic and enterotoxic strains in food by coupling propidium monoazide and multiplex PCR (PMA-mPCR). Food Control. 55: 151-157. [DOI:10.1016/j.foodcont.2015.02.049]
9. Glasset B., Herbin S., Guillier L., Cadel-Six S., Vignaud M.L., Grout J., Pairaud S., Michel V., Hennekinne J.A., Ramarao N. (2016). Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: epidemiology and genetic characterisation. Eurosurveillance. 21: 304-313. [DOI:10.2807/1560-7917.ES.2016.21.48.30413]
10. Huseby M., Shi K., Brown C.K., Digre J., Mengistu F., Seo K.S., Bohach G.A., Schlievert P.M., Ohlendorf D.H., Earhart C.A. (2007). Structure and biological activities of beta toxin from Staphylococcus aureus. Journal of Bacteriology. 189: 8719-8726. [DOI:10.1128/JB.00741-07]
11. Husmark U., Rönner U. (1992). The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling. 5: 335-344. [DOI:10.1080/08927019209378253]
12. Kim J.B., Choi O.K., Kwon S.M., Cho S.H., Park B.J., Jin N.Y., Yu Y.M., Oh D.H. (2017). Prevalence and toxin characteristics of Bacillus thuringiensis isolated from organic vegetables. Journal of Microbiology and Biotechnology. 27: 1449-1456.
13. Kotiranta A., Lounatmaa K., Haapasalo M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and Infection. 2: 189-198. [DOI:10.1016/S1286-4579(00)00269-0]
14. Kudjawu B.D., Sakyi-Dawson E., Amoa-Awua W.K. (2011). The microbiota of dried traditional vegetables produced in the Sudan Savannah and Guinea Savannah agro-ecological zones of Ghana. International Food Research Journal. 18: 101-108.
15. Logan N.A., Rodríguez‐Díaz M. (2006). Bacillus spp. and related genera. In: Gillespie S., Hawkey P.M. (Editors). Principles and practice of clinical bacteriology. John Wiley and Sons, UK. [DOI:10.1002/9780470017968.ch9]
16. Pirhonen T.I., Andersson M.A., Jääskeläinen E.L., Salkinoja-Salonen M.S., Honkanen-Buzalski T., Johansson T.L. (2005). Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiology. 22: 87-91. [DOI:10.1016/j.fm.2004.04.002]
17. Postollec F., Mathot A.G., Bernard M., Divanac'h M.L., Pavan S., Sohier D. (2012). Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes. International Journal of Food Microbiology. 158: 1-8. [DOI:10.1016/j.ijfoodmicro.2012.03.004]
18. Sagoo S.K., Little C.L., Greenwood M., Mithani V., Grant K.A., McLauchlin J., De Pinna E., Threlfall E.J. (2009). Assessment of the microbiological safety of dried spices and herbs from production and retail premises in the United Kingdom. Food Microbiology. 26: 39-43. [DOI:10.1016/j.fm.2008.07.005]
19. Stenfors Arnesen L.P., Fagerlund A., Granum P.E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiology Reviw. 32: 579-606. [DOI:10.1111/j.1574-6976.2008.00112.x]
20. Tewari A., Abdullah S. (2015). Bacillus cereus food poisoning: international and Indian perspective. Journal of Food Sciences and Technology. 52: 2500-2511. [DOI:10.1007/s13197-014-1344-4]
21. Thorns C.J. (2000). Bacterial food-borne zoonoses. Revue Scientifique Et Technique. 19: 226-239. [DOI:10.20506/rst.19.1.1219]
22. Valero M., Hernández-Herrero L.A., Fernandez P.S., Salmeron M.C. (2002). Characterization of Bacillus cereus isolates from fresh vegetables and refrigerated minimally processed foods by biochemical and physiological tests. Food Microbiology. 19: 491-499. [DOI:10.1006/fmic.2002.0507]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb