Volume 6, Issue 4 (December 2019)                   J. Food Qual. Hazards Control 2019, 6(4): 134-145 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jinadasa B, Fowler S. A Critical Review of Arsenic Contamination in Sri Lankan Foods. J. Food Qual. Hazards Control. 2019; 6 (4) :134-145
URL: http://jfqhc.ssu.ac.ir/article-1-629-en.html
Analytical Chemistry Laboratory (ACL), National Aquatic Resources Research & Development Agency (NARA), Colombo 15, Sri Lanka , jinadasa76@gmail.com
Abstract:   (4522 Views)
Numerous studies have shown growing information indicating the contribution of food to the dietary exposure of arsenic (As) through consumption of different food items in many different regions over the world. However, few review papers with regard to As in Sri Lankan foods are available in databases. Thus, a critical review and assessment of a number of local studies on total As concentrations has been made in rice, fish and fisheries products, vegetables, and other food products from Sri Lanka. From a limited comparison of freshwater fish with two marine species, the tuna and rays have substantially higher total As concentrations than all the freshwater species analyzed. One of the more important findings is that rice, the staple food of the country, is a major contributor to total As exposure of the population. Hence, based on the assessment of available data for total As levels in the various foods analyzed, it is suggested that a shift in a staple food diet of rice to one of maize and multi-cereal grains could lead to a reduction in total As exposure to the general population. Furthermore, important information gaps were identified such as a total lack of corresponding data for total As in Sri Lankan fruit crops, and a major one being the present lack of any information on the various inorganic and organic As species in local foods. Finally, some suggestions are made for giving guidance in agricultural practices which will lead to a reduction in As inputs to the local farmlands. This data compilation and assessment serves as an initial baseline for comparison with As results from future monitoring and research studies in Sri Lanka.

DOI: 10.18502/jfqhc.6.4.1991
Full-Text [PDF 525 kb]   (789 Downloads)    
Type of Study: Review article | Subject: Special
Received: 19/02/28 | Accepted: 19/08/11 | Published: 19/12/16

1. Agency for Toxic Substances and Disease Registry (ATSDR). (2013). Arsenic Toxicity, URL: https://www.atsdr.cdc.gov/ csem/arsenic/docs/arsenic.pdf. Accessed 1 January 2019.
2. Agency for Toxic Substances and Disease Registry (ATSDR). (2017). ATSDR's substance priority list. URL: https://www.atsdr.cdc.gov/SPL/). Accessed 20 December 2018.
3. Ahmad S.A., Sayed M.H.S.U., Barua S., Khan M.H., Faruquee M.H., Jalil A., Hadi S.A., Talukder H.K. (2001). Arsenic in drinking water and pregnancy outcomes. Environmental Health Perspectives. 109: 629-631. [DOI: 10.1289/ehp.01109629] [DOI:10.1289/ehp.01109629] [PMID] [PMCID]
4. Alahakoon A.U., Jo C., Jayasena D.D. (2016). An overview of meat industry in Sri Lanka: a comprehensive review. Korean Journal for Food Science of Animal Resources. 36: 137-144. [DOI: 10.5851/kosfa.2016.36.2.137] [DOI:10.5851/kosfa.2016.36.2.137] [PMID] [PMCID]
5. Allinson G., Nishikawa M., de Silva S.S., Laurenson L.J.B., de Silva K. (2002). Observation on metal concentrations in Tilapia (Oreochromis mossambicus) in reservoirs of south Sri Lanka. Ecotoxicology and Environmental Safety. 51: 197-202. [DOI: 10.1006/eesa.2001.2112] [DOI:10.1006/eesa.2001.2112] [PMID]
6. Almberg K.S., Turyk M.E., Jones R.M., Rankin K., Freels S., Graber J.M., Stayner L.T. (2017). Arsenic in drinking water and adverse birth outcomes in Ohio. Environmental Research. 157: 52-59. [DOI:10.1016/j.envres.2017.05.010] [DOI:10.1016/j.envres.2017.05.010] [PMID]
7. Anacleto P., Lourenço H.M., Ferraria V., Afonso C., Luísa Carvalho M., Fernanda Martins M., Leonor Nunes M. (2009). Total arsenic content in seafood consumed in Portugal. Journal of Aquatic Food Product Technology. 18: 32-45. [DOI: 10.1080/10498850802581088] [DOI:10.1080/10498850802581088]
8. Antonova S., Zakharova E. (2016). Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: a mini-review. Electrochemistry Communications. 70: 33-38. [DOI: 10.1016/j.elecom.2016.06.011] [DOI:10.1016/j.elecom.2016.06.011]
9. Azevedo L.S., Pestana I.A., Meneguelli-Souza A.C., Ramos B., Pessanha D.R., Caldas D., Almeida M.G., de Souza C.M.M. (2018). Risk of exposure to total and inorganic arsenic by meat intake among different age groups from Brazil: a probabilistic assessment. Environmental Science and Pollution Research. 25: 35471-35478. [DOI: 10.1007/s11356-018-3512-y] [DOI:10.1007/s11356-018-3512-y] [PMID]
10. Baig J.A., Kazi T.G., Shah A.Q., Afridi H.I., Kandhro G.A., Khan S., Kolachi N.F., Wadhwa S.K., Shah F., Arain M.B., Jamali M.K. (2011). Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food and Chemical Toxicology. 49: 265-270. [DOI: 10.1016/j.fct.2010.11.002] [DOI:10.1016/j.fct.2010.11.002] [PMID]
11. Baig J.A., Kazi T.G., Shah A.Q., Arain M.B., Afridi H.I., Khan S., Kandhro G.A., Naeemullah, Soomro A.S. (2010). Evaluating the accumulation of arsenic in maize (Zea mays L.) plants from its growing media by cloud point extraction. Food and Chemical Toxicology. 48: 3051-3057. [DOI: 10.1016/j.fct.2010.07.043] [DOI:10.1016/j.fct.2010.07.043] [PMID]
12. Balouch A., Jagirani M.S., Mustafai F.A., Tunio A., Sabir S., Mahar A.M., Rajar K., Shah M.T., Samoon M.K. (2017). Arsenic remediation by synthetic and natural adsorbents. Pakistan Journal of Analytical and Environmental Chemistry. 18: 18-36. [DOI: 10.21743/pjaec/2017.06.02] [DOI:10.21743/pjaec/2017.06.02]
13. Bandara U.G.C., Diyabalanage S., Hanke C., van Geldern R., Barth J.A.C., Chandrajith R. (2018). Arsenic-rich shallow groundwater in sandy aquifer systems buffered by rising carbonate waters: a geochemical case study from Mannar Island, Sri Lanka. Science of the Total Environment. 633: 1352-1359. [DOI: 10.1016/j.scitotenv.2018.03.226] [DOI:10.1016/j.scitotenv.2018.03.226] [PMID]
14. Belon P., Banerjee A., Karmakar S.R., Biswas S.J., Choudhury S.C., Banerjee P., Das J.K., Pathak S., Guha B., Paul S., Bhattacharjee N., Khuda-Bukhsh A.R. (2007). Homeopathic remedy for arsenic toxicity?: Evidence-based findings from a randomized placebo-controlled double blind human trial. Science of the Total Environment. 384: 141-150. [DOI: 10.1016/j.scitotenv.2007.06.001] [DOI:10.1016/j.scitotenv.2007.06.001] [PMID]
15. Bencko V., Foong F.Y.L. (2017). The history of arsenical pesticides and health risks related to the use of Agent Blue. Annals of Agricultural and Environmental Medicine. 24: 312-316. [DOI:10.26444/aaem/74715] [DOI:10.26444/aaem/74715] [PMID]
16. Bhattacharya P., Samal A.C., Majumdar J., Santra S.C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water, Air, and Soil Pollution. 213: 3-13. [DOI: 10.1007/s11270-010-0361-9] [DOI:10.1007/s11270-010-0361-9]
17. Bhupander K., Mukherjee D.P. (2011). Assessment of human health risk for arsenic, copper, nickel, mercury and zinc in fish collected from tropical wetlands in India. Advances in Life Science and Technology. 2: 13-24.
18. Bvenura C., Sivakumar D. (2017). The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Research International. 99: 15-30. [DOI: 10.1016/j.foodres.2017.06.046] [DOI:10.1016/j.foodres.2017.06.046] [PMID]
19. Chandrajith R., Nanayakkara S., Itai K., Aturaliya T.N.C., Dissanayake C.B., Abeysekera T., Harada K., Watanabe T., Koizumi A. (2011). Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: geographic distribution and environmental implications. Environmental Geochemistry and Health. 33: 267-278. [DOI: 10.1007/s10653-010-9339-1] [DOI:10.1007/s10653-010-9339-1] [PMID]
20. Chen H., Tang Z., Wang P., Zhao F.-J. (2018). Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution. 238: 482-490. [DOI: 10.1016/j.envpol.2018.03.048] [DOI:10.1016/j.envpol.2018.03.048] [PMID]
21. Cheng W.-D., Zhang G.-P., Yao H.-G., Wu W., Xu M. (2006). Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. Journal of Zhejiang University-Science B. 7: 565-571. [DOI: 10.1631/jzus.2006.B0565] [DOI:10.1631/jzus.2006.B0565] [PMID] [PMCID]
22. Chiocchetti G., Jadán-Piedra C., Vélez D., Devesa V. (2017). Metal (loid) contamination in seafood products. Critical Reviews in Food Science and Nutrition. 57: 3715-3728. [DOI: 10.1080/10408398.2016.1161596] [DOI:10.1080/10408398.2016.1161596] [PMID]
23. Ciminelli V.S.T., Gasparon M., Ng J.C., Silva G.C., Caldeira C.L. (2017). Dietary arsenic exposure in Brazil: the contribution of rice and beans. Chemosphere. 168: 996-1003. [DOI: 10.1016/j.chemosphere.2016.10.111] [DOI:10.1016/j.chemosphere.2016.10.111] [PMID]
24. Commission Regulation. (2015). Commission Regulation (EC), No 2015/1006 of amending Regulation No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Official Journal of European :union:. L161: 14-16.
25. da Rosa F.C., Pardinho R., Moreira M.E.S., de Souza L.G.T., de Moraes É.M.F., Mortari S.R., Dressler V.L. (2019). In vitro stability of arsenic trioxide-liposome encapsulates for acute promyelocytic leukemia treatment. Leukemia Research. 76: 11-14. [DOI: 10.1016/j.leukres.2018.11.008.] [DOI:10.1016/j.leukres.2018.11.008] [PMID]
26. de Gieter M., Leermakers M., Van Ryssen R., Noyen J., Goeyens L., Baeyens W. (2002). Total and toxic arsenic levels in North sea fish. Archives of Environmental Contamination and Toxicology. 43: 406-417. [DOI/10.1007/s00244-002-1193-4] [DOI:10.1007/s00244-002-1193-4] [PMID]
27. Diyabalanage S., Abekoon S., Watanabe I., Watai C., Ono Y., Wijesekara S., Guruge K.S., Chandrajith R. (2016a). Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka? Environmental Geochemistry and Health. 38: 679-690. [DOI: 10.1007/s10653-015-9749-1] [DOI:10.1007/s10653-015-9749-1] [PMID]
28. Diyabalanage S., Navarathna T., Abeysundara H.T.K., Rajapakse S., Chandrajith R.(2016b). Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: implications for public health. Springer Plus. 5: 1864. [DOI: 10.1186/s40064-016-3547-9] [DOI:10.1186/s40064-016-3547-9] [PMID] [PMCID]
29. Edirisinghe E.M.R.K.B., Jinadasa B.K.K.K. (2019). Arsenic and cadmium concentrations in legumes and cereals grown in the North Central Province, Sri Lanka and assessment of their health risk. International Journal of Food Contamination. 6: 3. [DOI: 10.1186/s40550-019-0073-x] [DOI:10.1186/s40550-019-0073-x]
30. Food Standards Australia and New Zealand (FSANZ). (2017). Contaminants and natural toxicants. URL: https://www. legislation.gov.au/Details/F2015C00052. Australia New Zealand Food Authority. Standard Code: 1.4.1. Accessed 02 August 2019.
31. Garvey G.J., Hahn G., Lee R.V., Harbison R.D. (2001). Heavy metal hazards of Asian traditional remedies. International Journal of Environmental Health Research. 11: 63-71. [DOI: 10.1080/09603120020019656] [DOI:10.1080/09603120020019656] [PMID]
32. Ghosh A., Majumder S., Awal M.A., Rao D.R. (2013). Arsenic exposure to dairy cows in Bangladesh. Archives of Environmental Contamination and Toxicology. 64: 151-159. [DOI: 10.1007/s00244-012-9810-3] [DOI:10.1007/s00244-012-9810-3] [PMID]
33. Han B.C., Jeng W.L., Chen R.Y., Fang G.T., Hung T.C., Tseng R.J. (1998). Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Archives of Environmental Contamination and Toxicology. 35: 711-720. [DOI: 10.1007/s002449900535] [DOI:10.1007/s002449900535] [PMID]
34. Hashemi M., Sadeghi A., Saghi M., Aminzare M., Raeisi M., Rezayi M., Tavakoli Sany S.B. (2019). Health risk assessment for human exposure to trace metals and arsenic via consumption of hen egg collected from largest poultry industry in Iran. Biological Trace Element Research. 188: 485-493. [DOI: 10.1007/s12011-018-1437-4] [DOI:10.1007/s12011-018-1437-4] [PMID]
35. Herath H.M.A.S., Kawakami T., Nagasawa S., Serikawa Y., Motoyama A., Chaminda G.G.T., Weragoda S.K., Yatigammana S.K., Amarasooriya A.A.G.D. (2018). Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology. Journal of Water and Health. 16: 212-222. [DOI: 10.2166/wh.2018.070] [DOI:10.2166/wh.2018.070] [PMID]
36. Herath H.M.A.S., Kubota K., Kawakami T., Nagasawa S., Motoyama A., Weragoda S.K., Chaminda G.G.T., Yatigammana S.K. (2017). Potential risk of drinking water to human health in Sri Lanka. Environmental Forensics. 18: 241-250. [DOI: 10.1080/15275922.2017.1340364] [DOI:10.1080/15275922.2017.1340364]
37. Hsueh Y.M., Chen W.J., Lee C.Y., Chien S.N., Shiue H.S., Huang S.R., Lin M.I., Mu S.C., Hsieh R.L. (2016). Association of arsenic methylation capacity with developmental delays and health status in children: a prospective case-control trial. Scientific Reports. 6: 37287. [DOI: 10.1038/srep37287] [DOI:10.1038/srep37287] [PMID] [PMCID]
38. Hu Y., Cheng H., Tao S. (2016). The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environment International. 92-93: 515-532. [DOI: 10.1016/j.envint.2016.04.042] [DOI:10.1016/j.envint.2016.04.042] [PMID]
39. Hu P., Ouyang Y., Wu L., Shen L., Luo Y., Christie P. (2015). Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences. 27: 225-231. [DOI: 10.1016/j.jes.2014.05.048] [DOI:10.1016/j.jes.2014.05.048] [PMID]
40. Hulle M..V, Zhang C., Schotte B., Mees L., Vanhaecke F., Vanholder R., Zhang X.R., Cornelis R. (2004). Identification of some arsenic species in human urine and blood after ingestion of Chinese seaweed Laminaria. Journal of Analytical Atomic Spectrometry. 19: 58-64. [DOI: 10.1039/B307457A] [DOI:10.1039/b307457a]
41. International Agency for Research on Cancer (IARC). (2018). IARC monographs on the evaluation of carcinogenic risk to human. Volume 1-123. URL: https://monographs.iarc.fr/list-of-classifications-volumes. Accessed 29 December 2018.
42. Islam M.S., Ahmed M.K., Habibullah-Al-Mamun M., Eaton D.W. (2017a). Arsenic in the food chain and assessment of population health risks in Bangladesh. Environment Systems and Decisions. 37: 344-352. [DOI 10.1007/s10669-017-9635-8] [DOI:10.1007/s10669-017-9635-8]
43. Islam S., Rahman M.M., Islam M.R., Naidu R. (2017b). Effect of irrigation and genotypes towards reduction in arsenic load in rice. Science of the Total Environment. 609: 311-318. [DOI: 10.1016/j.scitotenv.2017.07.111] [DOI:10.1016/j.scitotenv.2017.07.111] [PMID]
44. Jayasekera R., Freitas M.C. (2005). Concentration levels of major and trace elements in rice from Sri Lanka as determined by the k0 standardization method. Biological Trace Element Research. 103: 83-96. [DOI: 10.1385/BTER:103:1:083] [DOI:10.1385/BTER:103:1:083]
45. Jayasumana C., Fonseka S., Fernando A., Jayalath K., Amarasinghe M., Siribaddana S., Gunatilake S., Paranagama P. (2015a). Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springer Plus. 4: 90. [DOI: 10.1186/s40064-015-0868-z] [DOI:10.1186/s40064-015-0868-z] [PMID] [PMCID]
46. Jayasumana M.A.C.S., Paranagama P.A., Amarasinghe M.D., Wijewardane K.M.R.C., Dahanayake K.S., Fonseka S., Rajakaruna K., Mahamithawa A., Samarasinghe U., Senanayake V. (2013a). Possible link of chronic arsenic toxicity with chronic kidney disease of unknown etiology in Sri Lanka. Journal of Natural Sciences Research. 3.
47. Jayasumana C., Paranagama P., Fonseka S., Amarasinghe M., Gunatilake S., Siribaddana S. (2015b). Presence of arsenic in Sri Lankan rice. International Journal of Food Contamination. 2: 1. [DOI 10.1186/s40550-015-0007-1] [DOI:10.1186/s40550-015-0007-1]
48. Jayasumana M.A.C.S., Paranagama P.A., Amarasinghe M.D., Wijewardene K.M.R.C., Dahanayake K.S., Fonseka S.I., Rajakaruna K.D.L.M.P., Mahamithawa A.M.P., Samarasinghe U.D.S., Senanayake V.K. (2013b). Possible link of chronic arsenic toxicity with chronic kideny disease of unknown etiology in Sri Lanka. Journal of Natural Sciences Research. 3: 64-73.
49. Jayatilake N., Mendis S., Maheepala P., Mehta F.R. (2013). Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. BMC Nephrology. 14: 180. [DOI: 10.1186/1471-2369-14-180] [DOI:10.1186/1471-2369-14-180] [PMID] [PMCID]
50. Jayawardana D.T., Pitawala H.M.T.G.A., Ishiga H. (2014). Assessment of soil geochemistry around some selected agricultural sites of Sri Lanka. Environmental Earth Sciences. 71: 4097-4106. [DOI: 10.1007/s12665-013-2798-9] [DOI:10.1007/s12665-013-2798-9]
51. Jinadasa B.K.K.K., Ariyarathne D.S., Ahmad S.B.N. (2014). Trace metal contaminants in tissues of the Orinoco Sailfin Catfish Pterygoplichthy smultiradiatus, (Hancock, 1828); Sri Lanka. Nature and Science. 12: 1-4.
52. Jinadasa B.K.K.K., Chathurika G.S., Jayaweera C.D., Jayasinghe G.D.T.M. (2018). Mercury and cadmium in swordfish and yellowfin tuna and health risk assessment for Sri Lankan consumers. Food Additives and Contaminants: Part B. 12: 75-80. . [DOI: 10.1080/19393210.2018.1551247] [DOI:10.1080/19393210.2018.1551247] [PMID]
53. Jinadasa B.K.K.K., Mahaliyana A.S., Liyanage N.P.P., Jayasinghe G.D.T.M. (2015). Trace metals in the muscle tissues of skipjack tuna (Katsuwonus pelamis) in Sri Lanka. Cogent Food and Agriculture. 1: 1038975. [DOI: 10.1080/23311932.2015.1038975] [DOI:10.1080/23311932.2015.1038975]
54. Jinadasa B.K.K.K., Thayalan K., Subasinghe M.M., de Silva M.S.W.I.W., Liyanage D.N. (2013). Determination of trace metal concentration in inland fish species of North-Central Province-Sri Lanka. Ceylon Journal of Science. 42: 79-86. [DOI:10.4038/cjsbs.v42i2.6611]
55. Joint FAO/WHO Expert Committee on Food Additives (JECFA). (2017). Working document for information and use in discussions related to contaminants and toxins in the GSCTFF. Rome, Italy: FAO/WHO.
56. Jolly Y.N., Iqbal S., Rahman M.S., Kabir J., Akter S., Ahmad I. (2017). Energy dispersive X-ray fluorescence detection of heavy metals in Bangladesh cows' milk. Heliyon 3: e00403. [DOI: 10.1016/j.heliyon.2017.e00403] [DOI:10.1016/j.heliyon.2017.e00403] [PMID] [PMCID]
57. Kariyawasam T.I., Godakumbura P.I., Prashantha M.A.B., Premakumara G.A.S. (2016). Proximate composition, calorie content and heavy metals (As, Cd, Pb) of selected Sri Lankan traditional rice (Oryza Sativa L.) varieties. Procedia Food Science. 6: 253-256. [DOI: 10.1016/j.profoo.2016.02.036] [DOI:10.1016/j.profoo.2016.02.036]
58. Khoshbakht Fahim N., Beheshti H.R., Fakoor Janati S.S., Feizy J. (2013). Survey of cadmium, lead, and arsenic in sesame from Iran. International Journal of Industrial Chemistry. 4: 10. [DOI: 10.1186/2228-5547-4-10] [DOI:10.1186/2228-5547-4-10]
59. Kramar U., Norra S., Berner Z., Kiczka M., Chandrasekharam D. (2017). On the distribution and speciation of arsenic in the soil-plant-system of a rice field in West-Bengal, India: a μ-synchrotron techniques based case study. Applied Geochemistry. 77: 4-14. [DOI: 10.1016/j.apgeochem.2015. 11.006] [DOI:10.1016/j.apgeochem.2015.11.006]
60. Kumarathilaka P., Seneweera S., Meharg A., Bundschuh J. (2018). Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment. 642: 485-496. [DOI: 10.1016/j.scitotenv.2018. 06.030] [DOI:10.1016/j.scitotenv.2018.06.030] [PMID]
61. Kumari B., Kumar V., Sinha A.K., Ahsan J., Ghosh A.K., Wang H., DeBoeck G. )2017(. Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters. 15: 43-64. [DOI 10.1007/s10311-016-0588-9] [DOI:10.1007/s10311-016-0588-9]
62. Levine K.E., Redmon J.H., Elledge M.F., Wanigasuriya K.P., Smith K., Munoz B., Waduge V.A., Periris-John R.J., Sathiakumar N., Harrington J.M., Womack D.S., Wickremasinghe R. (2016). Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples. Environmental Monitoring and Assessment. 188: 548. [DOI: 10.1007/s10661-016-5524-8] [DOI:10.1007/s10661-016-5524-8] [PMID]
63. Liao C.M., Ling M.P. (2003). Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Archives of Environmental Contamination and Toxicology. 45:264-272. [DOI: 10.1007/s00244-003-0107-4] [DOI:10.1007/s00244-003-0107-4] [PMID]
64. Liao C.M., Shen H.H., Lin T.L., Chen S.C., Chen C.L., Hsu L.I., Chen C.J. (2008). Arsenic cancer risk posed to human health from tilapia consumption in Taiwan. Ecotoxicology and Environmental Safety. 70: 27-37. [DOI: 10.1016/j.ecoenv. 2007.10.018] [DOI:10.1016/j.ecoenv.2007.10.018] [PMID]
65. Liu C.W., Liang C.P., Huang F.M., Hsueh Y.M. (2006). Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Science of the Total Environment. 361: 57-66. [DOI: 10.1016/j.scitotenv.2005.06.005] [DOI:10.1016/j.scitotenv.2005.06.005] [PMID]
66. Lu G.Y., Ke C.H., Zhu A., Wang W.X. (2017). Oyster-based national mapping of trace metals pollution in the Chinese coastal waters. Environmental Pollution. 224: 658-669. [DOI: 10.1016/j.envpol.2017.02.049] [DOI:10.1016/j.envpol.2017.02.049] [PMID]
67. Luten J.B., Riekwel-Booy G., Rauchbaar A. (1982). Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man. Environmental Health Perspectives. 45: 165-170. [DOI: 10.1289/ehp.8245165] [DOI:10.1289/ehp.8245165] [PMID] [PMCID]
68. Ma L., Wang L., Jia Y., Yang Z. (2016). Arsenic speciation in locally grown rice grains from Hunan Province, China: spatial distribution and potential health risk. Science of the Total Environment. 557-558: 438-444. [DOI: 10.1016/j.scitotenv. 2016.03.051] [DOI:10.1016/j.scitotenv.2016.03.051] [PMID]
69. Majumder S., Banik P. (2019). Geographical variation of arsenic distribution in paddy soil, rice and rice-based products: a meta-analytic approach and implications to human health. Journal of Environmental Management. 233: 184-199. [DOI: 10.1016/j.jenvman.2018.12.034] [DOI:10.1016/j.jenvman.2018.12.034] [PMID]
70. Marwa E.M.M., Meharg A.A., Rice C.M. (2012). Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania. Science of the Total Environment. 416: 180-186. [DOI: 10.1016/j.scitotenv.2011. 11.089] [DOI:10.1016/j.scitotenv.2011.11.089] [PMID]
71. Meharg A.A., Lombi E., Williams P.N., Scheckel K.G., Feldmann J., Raab A., Zhu Y., Islam R. (2008). Speciation and localization of arsenic in white and brown rice grains. Environmental Science and Technology. 42: 1051-1057. [DOI: 10.1021/es702212p] [DOI:10.1021/es702212p] [PMID]
72. Ministry of Fisheries and Aquatic Resources (MOFAR). (2018). Fisheries statistics. Ministry of Fisheries and Aquatic Resources, Colombo, Sri Lanka, URL: https://www.fisheries. gov.lk/. Accessed 02 August 2019
73. MohammedAbdul K.S., Jayasinghe S.S., Chandana E.P.S., Jayasumana C., de Silva P.M.C.S. (2015). Arsenic and human health effects: a review. Environmental Toxicology and Pharmacology. 40: 828-846. [DOI: 10.1016/j.etap.2015. 09.016] [DOI:10.1016/j.etap.2015.09.016] [PMID]
74. Molin M., Ulven S.M., Meltzer H.M., Alexander J. (2015). Arsenic in the human food chain, biotransformation and toxicology-Review focusing on seafood arsenic. Journal of Trace Elements in Medicine and Biology. 31: 249-259. [DOI: 10.1016/j.jtemb.2015.01.010] [DOI:10.1016/j.jtemb.2015.01.010] [PMID]
75. Moreda-Piñeiro A., Peña-Vázquez E., Hermelo-Herbello P., Bermejo-Barrera P., Moreda-Piñeiro J., Alonso-Rodríguez E., Muniategui-Lorenzo S., López-Mahía P.N., Prada-Rodríguez D. (2008). Matrix solid-phase dispersion as a sample pretreatment for the speciation of arsenic in seafood products. Analytical Chemistry. 80: 9272-9278. [DOI: 10.1021/ ac801622u] [DOI:10.1021/ac801622u] [PMID]
76. Neidhardt H., Norra S., Tang X., Guo H., Stüben D. (2012). Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: results from a case study in the Inner Mongolia, China. Environmental Pollution. 163: 8-13. [DOI: 10.1016/j.envpol.2011.12.033] [DOI:10.1016/j.envpol.2011.12.033] [PMID]
77. Ooi M.S.M., Townsend K.A., Bennett M.B., Richardson A.J., Fernando D., Villa C.A., Gaus C. (2015). Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays. Marine Pollution Bulletin. 94: 251-259. [DOI: 10.1016/j.marpolbul.2015.02.005] [DOI:10.1016/j.marpolbul.2015.02.005] [PMID]
78. Perera M.A.K.K.P. (2018). Determination of arsenic and cadmium in Sri Lankan rice samples by inductively coupled plasma mass spectrometry (ICPMS) following microwave assisted acid digestion. Cient Periodique Nutrition. 1: 1-17.
79. Perera P., Munasinghe H., Marapana R.A.U.J. (2019). Quality assessment of selected dairy products in Sri Lankan market. Journal of Food Quality. [DOI: 10.1155/2019/6972427] [DOI:10.1155/2019/6972427]
80. Perera P.A.C.T., Sundarabarathy T.V., Sivananthawerl T., Kodithuwakku S.P., Edirisinghe U. (2016). Arsenic and cadmium contamination in water, sediments and fish is a consequence of paddy cultivation: evidence of river pollution in Sri Lanka. Achievements in the Life Sciences. 10: 144-160. [DOI: 10.1016/j.als.2016.11.002] [DOI:10.1016/j.als.2016.11.002]
81. Qian Y., Chen C., Zhang Q., Li Y., Chen Z., Li M. (2010). Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control. 21: 1757-1763. [DOI: 10.1016/j.foodcont.2010.08.005] [DOI:10.1016/j.foodcont.2010.08.005]
82. Rahman M.A., Hasegawa H., Lim R.P. (2012). Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research. 116: 118-135. [DOI: 10.1016/j.envres.2012.03.014] [DOI:10.1016/j.envres.2012.03.014] [PMID]
83. Rahman M.A., Hasegawa H., Rahman M.M., Rahman M.A., Miah M.A.M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere. 69: 942-948. [DOI: 10.1016/j. chemosphere.2007.05.044] [DOI:10.1016/j.chemosphere.2007.05.044] [PMID]
84. Rahman M.A., Rahman A., Khan M.Z.K., Renzaho A.M.N. (2018). Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: a scoping review. Ecotoxicology and Environmental Safety. 150: 335-343. [DOI: 10.1016/j.ecoenv.2017.12.032] [DOI:10.1016/j.ecoenv.2017.12.032] [PMID]
85. Rajapakse S., Shivanthan M.C., Selvarajah M. (2016). Chronic kidney disease of unknown etiology in Sri Lanka. International Journal of Occupational and Environmental Health. 22: 259-264. [DOI: 10.1080/10773525.2016.1203097] [DOI:10.1080/10773525.2016.1203097] [PMID] [PMCID]
86. Rajasooriyar L.D., Boelee E., Prado M.C., Hiscock K.M. (2013). Mapping the potential human health implications of groundwater pollution in southern Sri Lanka. Water Resources and Rural Development. 1: 27-42. [DOI: 10.1016/j.wrr.2013. 10.002] [DOI:10.1016/j.wrr.2013.10.002]
87. Rango T., Jeuland M., Manthrithilake H., McCornick P. (2015). Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka. Science of the Total Environment. 518: 574-585. [DOI: 10.1016/j.scitotenv.2015. 02.097] [DOI:10.1016/j.scitotenv.2015.02.097] [PMID]
88. Rosas I., Belmont R., Armienta A., Baez A. (1999). Arsenic concentrations in water, soil, milk and forage in Comarca Lagunera, Mexico. Water, Air, and Soil Pollution. 112: 133-149. [DOI:10.1023/A:1005095900193] [DOI:10.1023/A:1005095900193]
89. Rowell C., Kuiper N., Al-Saad K., Nriagu J., Shomar B. (2014). A market basket survey of As, Zn and Se in rice imports in Qatar: health implications. Food and Chemical Toxicology. 70: 33-39. [DOI: 10.1016/j.fct.2014.04.041] [DOI:10.1016/j.fct.2014.04.041] [PMID]
90. Sharafi K., Yunesian M., Nabizadeh Nodehi R., Mahvi A..H, Pirsaheb M., Nazmara S. (2019). The reduction of toxic metals of various rice types by different preparation and cooking processes-Human health risk assessment in Tehran households, Iran. Food Chemistry. 280: 294-302. [DOI: 10.1016/j.foodchem.2018.12.060] [DOI:10.1016/j.foodchem.2018.12.060] [PMID]
91. Silva N.R.N., Weerasinghe P., Kodikara K.M.S., Wakwella P. (2018). Toxic trace elements in soils and edible parts of root and tuber crops in up country wet and intermediate zones of Sri Lanka. Tropical Agriculturist. 166: 1-22.
92. Silva N.R.N., Weerasinghe P., Rathnapriya H.D.K. (2016). Toxic trace elements in vegetables collected from markets in Kandy district. Annals of the Sri Lanka Department of Agriculture. 18: 19-22.
93. Silva V., Jayasinghe M.A., Senadheera S.A., Ranaweera K.K.D.S. (2019). Determination of macronutrient compositions in selected, frequently consumed cereals, cereal based foods, legumes and pulses prepared according to common culinary methods in Sri Lanka. Journal of Food Science and Technology. 5: 61-68. [DOI: 10.1007/s13197-019-04085-x] [DOI:10.1007/s13197-019-04085-x]
94. Taylor V., Goodale B., Raab A., Schwerdtle T., Reimer K., Conklin S., Karagas M.R., Francesconi K.A. (2017). Human exposure to organic arsenic species from seafood. Science of the Total Environment. 580: 266-282. [DOI: 10.1016/j.scitotenv.2016. 12.113] [DOI:10.1016/j.scitotenv.2016.12.113] [PMID] [PMCID]
95. Upadhyay M.K., Shukla A., Yadav P., Srivastava S. (2019). A review of arsenic in crops, vegetables, animals and food products. Food Chemistry. 276: 608-618. [DOI: 10.1016/j.foodchem.2018.10.069] [DOI:10.1016/j.foodchem.2018.10.069] [PMID]
96. Vithanage M., Rajapaksha A.U., Wijesekara H., Weerarathne N., Ok Y.S. (2014). Effects of soil type and fertilizer on As speciation in rice paddy contaminated with As-containing pesticide. Environmental Earth Sciences. 71: 837-847. [DOI: 10.1007/s12665-013-2486-9] [DOI:10.1007/s12665-013-2486-9]
97. Von Ehrenstein O.S., Guha Mazumder D.N., Hira-Smith M., Ghosh N., Yuan Y., Windham G., Ghosh A., Haque R., Lahiri S., Kalman D., Das S. (2006). Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. American Journal of Epidemiology. 163: 662-669. [DOI: 10.1093/aje/kwj089] [DOI:10.1093/aje/kwj089] [PMID]
98. Wanasinghe W.C.S., Gunarathna M.H.J.P., Herath H.M.P.I.K., Jayasinghe G.Y. (2018). Drinking water quality on Chronic Kidney Disease of unknown aetiology (CKDu) in Ulagalla Cascade, Sri Lanka. Sabaragamuwa University Journal . 16: 17-27. [DOI:10.4038/suslj.v16i1.7714]
99. Werner J., Grześkowiak T., Zgoła-Grześkowiak A., Stanisz E. (2018). Recent trends in microextraction techniques used in determination of arsenic species. Trends in Analytical Chemistry. 105: 121-136. [DOI: 10.1016/j.trac.2018.05.006] [DOI:10.1016/j.trac.2018.05.006]
100. Whaley-Martin K.J., Koch I., Moriarty M., Reimer K.J. (2012). Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environmental Science and Technology. 46: 3110-3118. [DOI: 10.1021/es203812u] [DOI:10.1021/es203812u] [PMID]
101. Wickramaratne M.N., Maduranga T.M., Chamara L.S. (2016). Contamination of heavy metals in aquatic vegetables collected from cultivation sites in Sri Lanka. IOSR Journal of Environmental Science, Toxicology and Food Technology. 10: 76-82. [DOI: 10.9790/2402-1011047682]
102. Williams P.N., Islam M.R., Adomako E.E., Raab A., Hossain S.A., Zhu Y.G., Feldmann J., Meharg A.A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environmental Science and Technology. 40: 4903-4908. [DOI: 10.1021/es060222i] [DOI:10.1021/es060222i] [PMID]
103. Yang C.-Y., Chang C.C., Tsai S.S., Chuang H.Y., Ho C.K., Wu T.N. (2003). Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environmental Research. 91: 29-34. [DOI: 10.1016/s0013-9351(02)00015-4] [DOI:10.1016/S0013-9351(02)00015-4]
104. Zhou X., Qu X., Zheng N., Su C., Wang J., Soyeurt H. (2019). Large scale study of the within and between spatial variability of lead, arsenic, and cadmium contamination of cow milk in China. Science of the Total Environment. 650: 3054-3061. [DOI: 10.1016/j.scitotenv.2018.09.094] [DOI:10.1016/j.scitotenv.2018.09.094] [PMID]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb