Volume 6, Issue 4 (December 2019)                   J. Food Qual. Hazards Control 2019, 6(4): 174-178 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri A, Zandi H, Mozaffari Khosravi H. Effect of Electron Beam Irradiation on Survival of Escherichia coli O157:H7 and Salmonella enterica serovar Thyphimurium in Minced Camel Meat during Refrigerated Storage. J. Food Qual. Hazards Control. 2019; 6 (4) :174-178
URL: http://jfqhc.ssu.ac.ir/article-1-635-en.html
Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , zandi@ssu.ac.ir
Abstract:   (2991 Views)
Background: Electron beam irradiation is one of the effective ways to control food-borne pathogens. We evaluated the effect of electron beam irradiation on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Thyphimurium in minced camel meat during refrigerated storage.
Methods: The meat samples were inoculated with E. coli O157:H7 and S. enterica serovar Thyphimurium and then irradiated with doses of 0, 1, 2, 3, and 5 kGy. The samples were stored at 4±1 °C and evaluated microbiologically up to 10 days. Data were analyzed using SPSS software version 18.
Results: The microbial loads of minced camel meat samples were significantly reduced (p<0.0001) with increasing the dose of irradiation. The most effective dose was 5 kGy that highly reduced S. enterica serovar Typhimurium, and completely destroyed E. coli O157:H7. However, E. coli O157:H7 was more sensitive to electron beam irradiation than S. enterica serovar Typhimurium.
Conclusion: Electron beam irradiation effectively reduced the population of both E. coli O157:H7 and S. enterica serovar Typhimurium in minced camel meat in a dose dependent manner.

DOI: 10.18502/jfqhc.6.4.1996
Full-Text [PDF 329 kb]   (562 Downloads)    
Type of Study: Original article | Subject: Special
Received: 18/06/27 | Accepted: 18/11/14 | Published: 19/12/16

1. Aguirre J.S., Rodríguez M.R., de Fernando G.D.G. (2011). Effects of electron beam irradiation on the variability in survivor number and duration of lag phase of four food-borne organisms. International Journal of Food Microbiology. 149: 236-246. [DOI: 10.1016/j.ijfoodmicro.2011.07.003] [DOI:10.1016/j.ijfoodmicro.2011.07.003] [PMID]
2. Al-Bachir M., Zeinou R. (2009). Effect of gamma irradiation on microbial load and quality characteristics of minced camel meat. Meat Science. 82: 119-124. [DOI: 10.1016/j.meatsci.2008.12.012] [DOI:10.1016/j.meatsci.2008.12.012] [PMID]
3. Al-Owaimer A.N., Suliman G.M., Sami A.S., Picard B., Hocquette J.F. (2014). Chemical composition and structural characteristics of Arabian camel (Camelus dromedarius) m. longissimus thoracis. Meat Science. 96: 1233-1241. [DOI: 10.1016/j.meatsci.2013.10.025] [DOI:10.1016/j.meatsci.2013.10.025] [PMID]
4. Aymerich T., Picouet P.A., Monfort J.M. (2008). Decontamination technologies for meat products. Meat Science. 78: 114-129. [DOI: 10.1016/j.meatsci.2007.07.007] [DOI:10.1016/j.meatsci.2007.07.007] [PMID]
5. Cabeza M.C., de la Hoz L., Velasco R., Cambero M.I., Ordóñez J.A. (2009). Safety and quality of ready-to-eat dry fermented sausages subjected to E-beam radiation. Meat Science. 83: 320-327. [DOI: 10.1016/j.meatsci.2009.05.019] [DOI:10.1016/j.meatsci.2009.05.019] [PMID]
6. Fallah A.A., Saei-Dehkordi S.S., Rahnama M. (2010). Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken. Radiation Physics and Chemistry. 79: 1073-1078. [DOI: 10.1016/j.radphyschem.2010.04.015] [DOI:10.1016/j.radphyschem.2010.04.015]
7. Farkas J., Mohácsi-Farkas C. (2011). History and future of food irradiation. Trends in Food Science and Technology. 22: 121-126. [DOI: 10.1016/j.tifs.2010.04.002] [DOI:10.1016/j.tifs.2010.04.002]
8. Hennekinne J.A., Herbin S., Firmesse O., Auvray F. (2015). European food poisoning outbreaks involving meat and meat-based products. Procedia Food Science. 5: 93-96. [DOI: 10.1016/j.profoo.2015.09.024] [DOI:10.1016/j.profoo.2015.09.024]
9. Kadim I.T., Mahgoub O., Purchas R.W. (2008). A review of the growth, and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedaries). Meat Science. 80: 555-569. [DOI: 10.1016/j.meatsci.2008.02.010] [DOI:10.1016/j.meatsci.2008.02.010] [PMID]
10. Kanatt S.R., Chander R., Sharma A. (2005). Effect of radiation processing on the quality of chilled meat products. Meat Science. 69: 269-275. [DOI: 10.1016/j.meatsci.2004.07.006] [DOI:10.1016/j.meatsci.2004.07.006] [PMID]
11. Kanatt S.R., Rao M.S., Chawla S.P., Sharma A. (2010). Shelf-life extension of convenience meat products sold in Indian supermarkets by radiation processing. Radiation Physics and Chemistry. 79: 1259-1263. [DOI: 10.1016/j.radphyschem. 2010.07.008] [DOI:10.1016/j.radphyschem.2010.07.008]
12. Kim H.-J., Chun H.H., Song H.J., Song K.B. (2010). Effects of electron beam irradiation on the microbial growth and quality of beef jerky during storage. Radiation Physics and Chemistry. 79: 1165-1168. [DOI: 10.1016/j.radphyschem.2010.06.011] [DOI:10.1016/j.radphyschem.2010.06.011]
13. Kundu D., Gill A., Lui C., Goswami N., Holley R. (2014). Use of low dose e-beam irradiation to reduce E. coli O157: H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces. Meat science. 96: 413-418. [DOI: 10.1016/j.meatsci.2013.07.034] [DOI:10.1016/j.meatsci.2013.07.034] [PMID]
14. Lacroix M., Follett P. (2015). Combination irradiation treatments for food safety and phytosanitary uses. Stewart Postharvest Review. 11: 1-10. [DOI: 10.2212/spr.2015.3.4] [DOI:10.2212/spr.2015.3.4]
15. Lung H.M., Cheng Y.C., Chang Y.H., Huang H.W., Yang B.B., Wang C.Y. (2015). Microbial decontamination of food by electron beam irradiation. Trends in Food Science and Technology. 44: 66-78. [DOI: 10.1016/j.tifs.2015.03.005] [DOI:10.1016/j.tifs.2015.03.005]
16. Pillai S.D., Shayanfar S. (2018). Electron beam processing of fresh produce-A critical review. Radiation Physics and Chemistry. 143: 85-88. [DOI: 10.1016/j.radphyschem.2017.09.008] [DOI:10.1016/j.radphyschem.2017.09.008]
17. Roberts P.B. (2014). Food irradiation is safe: half a century of studies. Radiation Physics and Chemistry. 105: 78-82. [DOI: 10.1016/j.radphyschem.2014.05.016] [DOI:10.1016/j.radphyschem.2014.05.016]
18. Tahergorabi R., Matak K.E., Jaczynski J. (2012). Application of electron beam to inactivate Salmonella in food: recent developments. Food Research International. 45: 685-694. [DOI: 10.1016/j.foodres.2011.02.003] [DOI:10.1016/j.foodres.2011.02.003]
19. Tauxe R.V. (2001). Food safety and irradiation: protecting the public from foodborne infections. Emerging Infectious Diseases. 7: 516-521. [DOI: 10.3201/eid0707.017706] [DOI:10.3201/eid0707.017706] [PMID] [PMCID]
20. Waje C.K., Jun S.Y., Lee Y.K., Kim B.N., Han D.H., Jo C., Kwon J.H. (2009). Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts. Food Control. 20: 200-204. [DOI: 10.1016/j.foodcont.2008.04.005] [DOI:10.1016/j.foodcont.2008.04.005]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb