Volume 8, Issue 1 (March 2021)                   J. Food Qual. Hazards Control 2021, 8(1): 28-33 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maruddin F, Malaka R, Sabil S, Baba S, Amqam H, Taufik M. Types of Acid and Drying Method Differently Affect the Chemical Profile of Sodium Caseinate. J. Food Qual. Hazards Control. 2021; 8 (1) :28-33
URL: http://jfqhc.ssu.ac.ir/article-1-710-en.html
Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar, South Sulawesi, Indonesia , fatma_maruddin@unhas.ac.id
Abstract:   (294 Views)
Background: Sodium caseinate is a rich source of protein and minerals originating from animals. Numerous food and non-food products are made from sodium caseinate. The present study investigated the chemical components (moisture, crude protein, ash, and soluble crude protein) of sodium caseinate prepared by different acids and drying techniques.
Methods: A completely randomized factorial design was used by different acids including hydrochloric acid (HCl) and acetic acid, and also drying methods including oven (50 °C for 48 h) and freeze drying (-40 °C for 48 h). In each experimental group, sodium caseinate was obtained for determination of moisture, crude protein, ash, and soluble crude protein. Data were statistically evaluated using an ANOVA in SPSS 18.0.
Results: The interaction of both acids and drying methods significantly (p<0.01) affected moisture, crud protein, and ash content. HCl treatment coupled with freeze drying was the best combination, resulting in an appreciably higher content of crude protein (52.90%), moisture (5.38%), and soluble protein (0.85%).
Conclusion: The kinds of acid and drying method altered the chemically profile of sodium caseinate. The combination of HCl and freeze drying could be the considered as the best approach, resulting in good chemical characteristics of sodium caseinate.

DOI: 10.18502/jfqhc.8.1.5460
Full-Text [PDF 425 kb]   (130 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/01/20 | Accepted: 20/06/16 | Published: 21/03/13

1. Anggraeni A., Sumantri C., Farajallah A., Andreas E. (2010). Kappa-casein genotypic frequencies in holstein-friesian dairy cattle in West Java Province. Media Peternakan. 33: 61-67. [DOI: 10.5398/medpet.2010.33.2.61] [DOI:10.5398/medpet.2010.33.2.61]
2. AOAC. (2005). Official methods of analysis of AOAC international. 18th edition. Washington D.C. Association of Analytical Chemists.
3. Ciurzynska A., Lenart A. (2011). Freeze-drying-application in food processing and biotechnology-a review. Polish Journal of Food and Nutrition Science. 61: 165-171. [DOI: 10.2478/ v10222-011-0017-5] [DOI:10.2478/v10222-011-0017-5]
4. Codex Alimentarius. (1995). Standard for edible casein products: Codex Stan 290-1995. Rome: FAO and WHO.
5. Elzoghby A.O., El-Fotoh W.S.A., Elgindy N.A. (2011). Casein-based formulations as promising controlled release drug delivery systems. Journal of Controlled Release. 153: 206-216. [DOI: 10.1016/j.jconrel.2011.02.010] [DOI:10.1016/j.jconrel.2011.02.010]
6. Glab T.K., Boratynski J. (2017). Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry. 375: 71. [DOI: 10.1007/s41061-017-0158-z] [DOI:10.1007/s41061-017-0158-z]
7. Guo M., Wang G. (2016). Milk protein polymer and its application in environmentally safe adhesives. Polymers. 8: 324. [DOI: 10.3390/polym8090324] [DOI:10.3390/polym8090324]
8. Haque E., Chand R., Kapila S. (2008). Biofunctional properties of bioactive peptides of milk origin. Food Reviews International. 25: 28-43. [DOI: 10.1080/87559120802458198] [DOI:10.1080/87559120802458198]
9. Hariyadi P. (2013). Freeze drying technology: for better quality and flavor of dried products. Foodreview Indonesia, Teknologi, VIII: 52-56.
10. Hotnida S., Nidhi B., Bhesh B. (2017). Effects of milk pH alteration on casein micelle size and gelation properties of milk. International Journal of Food Properties. 20: 179-197. [DOI: 10.1080/10942912.2016.1152480] [DOI:10.1080/10942912.2016.1152480]
11. Husnaeni, Maruddin F., Malaka R., Prahesti K.I. (2019). Study on the use of various concentration of acetic acid and different precipitation duration on casein characteristics. IOP Conference Series Earth and Environmental Science. 343: 012035. [DOI: 10.1088/1755-1315/343/1/012035] [DOI:10.1088/1755-1315/343/1/012035]
12. Khwaldia K., Banon S., Perez C., Desobry S. (2004). Properties of sodium caseinate film-forming dispersions and films. Journal of Dairy Science. 87: 2011-2016. [DOI: 10.3168/jds.S0022-0302(04)70018-1] [DOI:10.3168/jds.S0022-0302(04)70018-1]
13. Lestari D.A., Abdullah L., Despal. (2015). Comparative study of milk production and feed efficiency based on farmer best practices and national research council. Media Peternakan. 38: 110-117. [DOI: 10.5398/medpet.2015.38.2.110] [DOI:10.5398/medpet.2015.38.2.110]
14. McIntyre I.M. (2017). Control of calcium-protein interaction in designing casein-based structures with novel functionality. University College Dubling. School of Agriculture and Food Science. The national University Ireland, Dublin.
15. Mocanu A.M., Moldoveanu C., Odochian L., Paius C.M., Apostolescu N., Neculau R. (2012). Study on the thermal behavior of casein under nitrogen and air atmosphere by means of the TG-FTIR technique. Thermochimica Acta. 546: 120-126. [DOI: 10.1016/j.tca.2012.07.031] [DOI:10.1016/j.tca.2012.07.031]
16. Mourad G., Bettache G., Samir M. (2014). Composition and nutritional value of raw milk. Biological Sciences and Pharmaceutical Research. 2: 115-122. [DOI: 10.15739/ibspr.005] [DOI:10.15739/ibspr.005]
17. Pereira P.C. (2014). Milk nutritional composition and its role in human health. Nutrition. 30: 619-627. [DOI: 10.1016/j.nut. 2013.10.011] [DOI:10.1016/j.nut.2013.10.011]
18. Raikos V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids. 24: 259-265. [DOI: 10.1016/j.foodhyd.2009.10.014] [DOI:10.1016/j.foodhyd.2009.10.014]
19. Saenmuang S., Sirijariyawat A., Aunsri N. (2017). The Effect of moisture content, temperature and variety on specific heat of edible-wild mushrooms: model construction and analysis. Engineering Letters. 25: 1-9.
20. Sarode A.R., Sawale P.D., Khedkar C.D., Kalyankar S.D., Pawshe R.D. (2016). Casein and caseinate: methods of manufacture. In: Caballero B., Finglas P., Toldra F. (Editors). The encyclopedia of food and health. Volume 1. Academy Press, London. [DOI:10.1016/B978-0-12-384947-2.00122-7]
21. Schou M., Longares A., Montesinos-Herrero C., Monahan F.J., O'Riordan D., O'Sullivan M. (2005). Properties of edible sodium caseinate films and their application as food wrapping. LWT-Food Science Technology. 38: 605-610. [DOI: 10.1016/j. lwt.2004.08.009] [DOI:10.1016/j.lwt.2004.08.009]
22. Seo M., Kim J., Park S., Lee J-H., Kim T., Lee J., Kim J. (2013). Weak acid hydrolysis of proteins. Bulletin Korean Chemical Society. 34: 27-28. [DOI: 10.5012/bkcs.2013.34.1.27] [DOI:10.5012/bkcs.2013.34.1.27]
23. Serin S., Turhan K.N., Turhan M. (2018). Correlation between water activity and moisture content of Turkish flower and pine honeys. Food Science and Technology. 38: 238-243. [DOI: 10.1590/1678-457x.31716] [DOI:10.1590/1678-457x.31716]
24. Sindayikengera S., Xia W-S. (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. Journal of Zhejiang University Science B. 7: 90-98. [DOI: 10.1631/jzus.2006.B0090] [DOI:10.1631/jzus.2006.B0090]
25. Sudibya, Purnomo S.H. (2013). Milk chemical composition of dairy cows fed rations containing protected omega-3 fatty acids and fermented rice Bran. Media Peternakan. 36: 224-229. [DOI: 10.5398/medpet.2013.36.3.224] [DOI:10.5398/medpet.2013.36.3.224]
26. Wagh Y.R., Pushpadass H.A., Emerald F.M.E., Nath B.S. (2014). Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. Journal of Food Science and Technology. 51: 3767-3775. [DOI: 10.1007/ s13197-012-0916-4] [DOI:10.1007/s13197-012-0916-4]
27. Ye R., Harte F. (2013). Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of Dairy Science. 96: 799-805. [DOI: 10.3168/jds.2012-5838] [DOI:10.3168/jds.2012-5838]

Add your comments about this article : Your username or Email:

© 2021 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb