Volume 8, Issue 4 (December 2021)                   J. Food Qual. Hazards Control 2021, 8(4): 162-168 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei Z, Salari A, Khanzadi S. Biofilm Formation and Antibacterial Properties of Lactobacillus Isolated from Indigenous Dairy Products. J. Food Qual. Hazards Control. 2021; 8 (4) :162-168
URL: http://jfqhc.ssu.ac.ir/article-1-797-en.html
Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran , Khanzadi@um.ac.ir
Abstract:   (467 Views)
Background: The health benefits of probiotic bacteria are not unknown to anyone. On the other hand, indigenous dairy sources are a potential source of native probiotics. This study aimed to describe the inhibitory activity of Cell-Free Supernatant (CFS), planktonic cells, and biofilm form of Lactobacillus strains isolated from native dairy sources on food pathogens.
Methods: Antibacterial activities of the CFS of lactobacillus strains were assessed by the microplate method and via violet staining, and in planktonic cells, and biofilm forms were performed by the spread plate method.
Results: The results showed that despite the large differences in biofilm formation power among the strains, most of them can produce biofilm. Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. Lactis, Lactobacillus brevis, and Lactobacillus lactis subsp. lactis formed the strongest biofilm, respectively. Planktonic states reduce the pathogens bacterial by about 1.43 log, but in biofilm forms, decreased Listeria monocytogenes by about 4.8 log compared to the control, and in the case of Pseudomonas aeruginosa, a growth reduction of about 2.8 logs was observed.
Conclusion: According to the study, biofilm produced by probiotic strains can be considered a new approach for biological control. Also, indigenous dairy sources can be considered by researchers to extract natural and beneficial probiotics.

DOI: 10.18502/jfqhc.8.4.8257 
Full-Text [PDF 578 kb]   (213 Downloads)    
Type of Study: Original article | Subject: Special
Received: 20/12/07 | Accepted: 21/10/23 | Published: 21/12/29

1. Afzaal M., Saeed F., Arshad M.U., Nadeem M.T., Saeed M., Tufail T. (2019). The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions. Probiotics and Antimicrobial Proteins. 11: 1348-1354. [DOI: 10.1007/s12602-018-9485-9] [DOI:10.1007/s12602-018-9485-9] [PMID]
2. Aminnezhad S., Kasra-Kermanshahi R. (2014). Antibiofilm activity of cell-free supernatant from Lactobacillus casei in Pseudomonas aeruginosa. Feyz, Journal of Kashan University of Medical Sciences. 18: 30-37. [Persian with English abstract]
3. Aoudia N., Rieu A., Briandet R., Deschamps J., Chluba J., Jego G., Garrido C., Guzzo J. (2016). Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology. 53: 51-59. [DOI: 10.1016/j.fm.2015.04.009] [DOI:10.1016/j.fm.2015.04.009] [PMID]
4. Bujňáková D., Kmeť V. (2012). Functional properties of Lactobacillus strains isolated from dairy products. Folia Microbiologica. 57: 263-267. [DOI: 10.1007/s12223-012-0121-x] [DOI:10.1007/s12223-012-0121-x] [PMID]
5. Chen Q., Sa R., Jia J., Xu R. (2017). Research on biofilm formation ability of lactic acid bacteria under different conditions. Advance Journal of Food Science and Technology. 13: 77-82. [DOI: 10.19026/ajfst.13.3769] [DOI:10.19026/ajfst.13.3769]
6. Di Ciccio P., Conter M., Zanardi E., Ghidini S., Vergara A., Paludi D., Festino A.R., Ianieri A. (2012). Listeria monocytogenes: biofilms in food processing. Italian Journal of Food Science. 24.
7. Edalatian M.R., Habibi Najafi M.B., Mortazavi A., Mayo B. (2012). The biodiversity and evolution of lactic flora during ripening of the Iranian semisoft Lighvan cheese. International Journal of Dairy Technology. 65: 81-89. [DOI: 10.1111/j.1471-0307.2011.00738.x] [DOI:10.1111/j.1471-0307.2011.00738.x]
8. Furukawa S. (2015). Studies on formation, control and application of biofilm formed by food related microorganisms. Bioscience, Biotechnology, and Biochemistry. 79: 1050-1056. [DOI: 10.1080/09168451.2015.1018126] [DOI:10.1080/09168451.2015.1018126] [PMID]
9. Guerrieri E., De Niederhäusern S., Messi P., Sabia C., Iseppi R., Anacarso I., Bondi M. (2009). Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control. 20: 861-865. [DOI: 10.1016/j.foodcont.2008.11.001] [DOI:10.1016/j.foodcont.2008.11.001]
10. Hajimohammadi Farimani R., Habibi Najafi M.B., Fazly Bazzaz B.S., Edalatian M.R., Bahrami A.R., Flórez A.B., Mayo B. (2016). Identification, typing and functional characterization of dominant lactic acid bacteria strains from Iranian traditional yoghurt. European Food Research and Technology. 242: 517-526. [DOI: 10.1007/s00217-015-2562-3] [DOI:10.1007/s00217-015-2562-3]
11. Hall-Stoodley L., Costerton J.W., Stoodley P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology. 2: 95-108. [DOI: 10.1038/ nrmicro821] [DOI:10.1038/nrmicro821] [PMID]
12. Iravani S., Korbekandi H., Mirmohammadi S.V. (2015). Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of food Science and Technology. 52: 4679-4696. [DOI: 10.1007/ s13197-014-1516-2] [DOI:10.1007/s13197-014-1516-2] [PMID] [PMCID]
13. Kaur S., Sharma P., Kalia N., Singh J., Kaur S. (2018). Anti-biofilm properties of the fecal probiotic lactobacilli against Vibrio spp. Frontiers in Cellular and Infection Microbiology. 8: 120. [DOI: 10.3389/fcimb.2018.00120] [DOI:10.3389/fcimb.2018.00120] [PMID] [PMCID]
14. Kawarai T., Furukawa S., Ogihara H., Yamasaki M. (2007). Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Applied and Environmental Microbiology. 73: 4673-4676. [DOI: 10.1128/AEM.02891-06] [DOI:10.1128/AEM.02891-06] [PMID] [PMCID]
15. Khiralla G.M., Mohamed E.A.H., Farag A.G., Elhariry H. (2015). Antibiofilm effect of Lactobacillus pentosus and Lactobacillus plantarum cell-free supernatants against some bacterial pathogens. Journal of Biotech Research. 6: 86-95.
16. Koohestani M., Moradi M., Tajik H., Badali A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Veterinary Research Forum. 9: 301-306. [DOI: 10.30466/vrf.2018.33086]
17. Kyere E.O., Foong G., Palmer J., Wargent J.J., Fletcher G.C., Flint S. (2020). Biofilm formation of Listeria monocytogenes in hydroponic and soil grown lettuce leaf extracts on stainless steel coupons. LWT. 126: 109114. [DOI: 10.1016/j.lwt.2020. 109114]. [DOI:10.1016/j.lwt.2020.109114]
18. Leccese Terraf M.C., Juárez Tomás M.S., Nader-Macías M.E.F., Silva C. (2012). Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. Journal of Applied Microbiology. 113: 1517-1529. [DOI: 10.1111/j.1365-2672.2012.05429.x] [DOI:10.1111/j.1365-2672.2012.05429.x] [PMID]
19. Mirnejad R., Vahdati A.R., Rashidiani J., Erfani M., Piranfar V. (2013). The antimicrobial effect of lactobacillus casei culture supernatant against multiple drug resistant clinical isolates of Shigella sonnei and Shigella flexneri in vitro. Iranian Red Crescent Medical Journal. 15: 122-126. [DOI: 10.5812/ircmj.7454] [DOI:10.5812/ircmj.7454] [PMID] [PMCID]
20. Moori Bakhtiari N., Javadmakoei S. (2017). Survey on biofilm production and presence of attachment factors in human uropathogenic strains of Escherichia coli. Jundishapur Journal of Microbiology. 10: e13108. [DOI: 10.5812/jjm-13108] [DOI:10.5812/jjm-13108] [PMID] [PMCID]
21. Ouali F.A., Al Kassaa I., Cudennec B., Abdallah M., Bendali F., Sadoun D., Chihib N.-E., Drider D. (2014). Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. International Journal of Food Microbiology. 191: 116-124. [DOI: 10.1016/j.ijfoodmicro.2014.09.011] [DOI:10.1016/j.ijfoodmicro.2014.09.011] [PMID]
22. Pereira V.G., Heman Castro Gómez R.J. (2007). Atividade antimicrobiana de Lactobacillus acidophilus, contra microrganismos patogênicos veiculados por alimentos. Semina: Ciências Agrárias, Londrina.28: 229-240. [DOI: 10.5433/1679-0359.2007v28n2p229] [DOI:10.5433/1679-0359.2007v28n2p229]
23. Rezaei Z., Khanzadi S., Salari A. (2021a). A survey on biofilm formation of Lactobacillus rhamnosus (PTCC 1637) and Lactobacillus plantarum (PTCC 1745) as a survival strategy of probiotics against antibiotic in vitro and yogurt. Journal of Food Processing and Preservation. 00: e15991. [DOI: 10.1111/jfpp.15991] [DOI:10.1111/jfpp.15991]
24. Rezaei Z., Khanzadi S., Salari A. (2021b). Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745). AMB Express. 11: 156. [DOI: 10.1186/s13568-021-01320-7] [DOI:10.1186/s13568-021-01320-7] [PMID] [PMCID]
25. Sadishkumar V., Jeevaratnam K. (2017). In vitro probiotic evaluation of potential antioxidant lactic acid bacteria isolated from idli batter fermented with Piper betle leaves. International Journal of Food Science and Technology. 52: 329-340. [DOI: 10.1111/ijfs.13284] [DOI:10.1111/ijfs.13284]
26. Salas-Jara M.J., Ilabaca A., Vega M., García A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms. 4: 35. [DOI: 10.3390/ microorganisms4030035] [DOI:10.3390/microorganisms4030035] [PMID] [PMCID]
27. Speranza B., Liso A., Russo V., Corbo M.R. (2020). Evaluation of the potential of biofilm formation of Bifidobacterium longum subsp. infantis and Lactobacillus reuteri as competitive biocontrol agents against pathogenic and food spoilage bacteria. Microorganisms. 8: 177. [DOI: 10.3390/ microorganisms8020177] [DOI:10.3390/microorganisms8020177] [PMID] [PMCID]
28. Stefania D.M., Miranda P., Diana M., Claudia Z., Rita P., Donatella P. (2017). Antibiofilm and antiadhesive activities of different synbiotics. Journal of Probiotics and Health. 5: 1000182 . [DOI: 10.4172/2329-8901.1000182] [DOI:10.4172/2329-8901.1000182]
29. Wang H.-H., Ye K.-P., Zhang Q.-Q., Dong Y., Xu X.-L., Zhou G.-H. (2013). Biofilm formation of meat-borne Salmonella enterica and inhibition by the cell-free supernatant from Pseudomonas aeruginosa. Food Control. 32: 650-658. [DOI: 10.1016/j.foodcont.2013.01.047] [DOI:10.1016/j.foodcont.2013.01.047]
30. Warke S.R., Ingle V.C., Kurkure N.V., Tembhurne P.A., Prasad M., Chaudhari S.P., Barbuddhe S.B. (2017). Biofilm formation and associated genes in Listeria monocytogenes. The Indian Journal of Veterinary Sciences and Biotechnology. 12: 7-12. [DOI: 10.21887/ijvsbt.v12i3.7079] [DOI:10.21887/ijvsbt.v12i3.7079]
31. Zamani H., Rahbar S., Garakoui S.R., Afsah Sahebi A., Jafari H. (2017). Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens. Pharmaceutical and Biomedical Research. 3: 39-44. [DOI: 10.29252/pbr.3.2.39] [DOI:10.29252/pbr.3.2.39]
32. Zhang H., Xie L., Zhang W., Zhou W., Su J., Liu J. (2013). The association of biofilm formation with antibiotic resistance in lactic acid bacteria from fermented foods. Journal of Food Safety. 33: 114-120. [DOI: 10.1111/jfs.12030] [DOI:10.1111/jfs.12030]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb