Volume 8, Issue 4 (December 2021)                   J. Food Qual. Hazards Control 2021, 8(4): 178-185 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khadijah K, Soekamto N, Firdaus F, Chalid S, Syah Y. Chemical Composition, Phytochemical Constituent, and Toxicity of Methanol Extract of Brown Algae (Padina sp.) from Puntondo Coast, Takalar (Indonesia). J. Food Qual. Hazards Control. 2021; 8 (4) :178-185
URL: http://jfqhc.ssu.ac.ir/article-1-883-en.html
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin, Jl. Perintis Kemerdekaan No.KM.10, Makassar 90245, South Sulawesi, Indonesia , nunukhariani@unhas.ac.id
Abstract:   (584 Views)
Background: Padina sp. is an algae that has potential as a functional food. This study aimed to explore the chemical and photochemical constituent in the methanolic exract of Padina sp.
Methods: Brown algae of Padina sp. from Puntondo coast, Takalar, Indonesia was prepared. The algae characterization was carried out based on the standard procedure of Association of Official Agricultural Chemists (AOAC). Toxicity of Padina sp. was determined with Brine Shrimp Lethality Test (BSLT).
Results: Chemical contents were 13.46% water, 38.02% ash, 12.33% protein, 1.60% fat, 20.02% fiber, and 48.06% carbohydrate. The FTIR spectrum displayed the presence of hydroxyl, carboxylic acids, aldehydes, aliphatic hydrocarbons, fatty acids, and unsaturated hydrocarbons. Padina sp. extract consisted of phytol compound which had 70-96% similarity with steroids, fatty acids, carboxylic acids, terpenoid, and proteins. The result of toxicity was 6344.54 ppm indicating not toxic.
Conclusion: Padina sp. can be used as a raw material source for functional food and pharmaceutical industry.

DOI: 10.18502/jfqhc.8.4.8259 
Full-Text [PDF 410 kb]   (219 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/02/15 | Accepted: 21/08/01 | Published: 21/12/29

1. Association of Official Analytical Chemist (AOAC). (2005). Official method of analysis. 18 th edition. Arlington, VA, USA.
2. Chew Y.L., Lim Y.Y., Omar M., Khoo K.S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT- Food Science and Technnoogy. 41: 1067-1072. [DOI: 10.1016/j.lwt.2007.06.013] [DOI:10.1016/j.lwt.2007.06.013]
3. Dawczynski C., Schubert R., Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry. 103: 891-899. [DOI: 10.1016/j.foodchem.2006.09. 041] [DOI:10.1016/j.foodchem.2006.09.041]
4. Fleurence J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology. 10: 25-28. [DOI: 10.1016/S0924-2244(99)00015-1] [DOI:10.1016/S0924-2244(99)00015-1]
5. Goecke F., Escobar M., Collantes G. (2012). Chemical composition of Padina fernandeziana (Phaeophyceae, Dictyotales) from Juan Fernandez Archipelago. Chile. Rev Latinoam Biotecnol Amb Algal. 3: 95-104.
6. Goecke F., Hernández V., Bittner M.,González M., Becerra J., Silva M. (2010). Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile. Revista de Biología Marina y Oceanografía. 45: 325-330. [DOI: 10.4067/S0718-19572010000200014] [DOI:10.4067/S0718-19572010000200014]
7. Harborne J.B. (1998). Textbook of phytochemical methods. A guide to modern techniques of plant analysis. 5th Edition. Chapman and Hall Ltd, London. pp: 21-72.
8. Haryani T.S., Lohitasari B., Triastinurmiatiningsih . (2019). Toxicity and compound identification of Padina australis extract. International Journal of Recent Technology and Engineering. 8: 79-82. [DOI: 10.35940/ijrte.B1016.0782S719] [DOI:10.35940/ijrte.B1016.0782S719]
9. Kadi A. (2004). Potensi rumput laut dibeberapa perairan pantai Indonesia. Oseana. 29: 25-36
10. Kim M.S., Kim J.Y., Choi W.H., Lee S.S. (2008). Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutrition Research and Practice. 2: 62-67. [DOI: 10.4162/nrp.2008.2.2.62] [DOI:10.4162/nrp.2008.2.2.62] [PMID] [PMCID]
11. Lanyon J. (1986). Guide to the identification of seagrasses in the great barrier reef region. Great Barrier Reef Marine Park Authority. Queensland.
12. Lee S.Y., Cho J.M., Chang Y.K., Oh Y.-K. (2017). Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresource Technology. 244: 1317-1328. [DOI: 10.1016/j. biortech.2017.06.038] [DOI:10.1016/j.biortech.2017.06.038] [PMID]
13. Mabeau S., Fleurence J. (1993). Seaweed in food products: biochemical and nutritional aspects. Trends in Food Science and Technology. 4: 103-107. [DOI: 10.1016/0924-2244(93)90091-N] [DOI:10.1016/0924-2244(93)90091-N]
14. MacArtain P., Gill C.I.R., Brooks M., Campbell R., Rowland I.R. (2007). Nutritional value of edible seaweeds. Nutrition Reviews. 65: 535-543. [DOI: 10.1301/nr.2007.dec.535-543] [DOI:10.1301/nr.2007.dec.535-543] [PMID]
15. Mansilla A., Ávila M. (2011). Using Macrocystis pyrifera (L.) C. Agardh from southern Chile as a source of applied biological compounds. Brazilian Journal of Pharmacognosy. 21: 262-267. [DOI: 10.1590/S0102-695X2011005000072] [DOI:10.1590/S0102-695X2011005000072]
16. Manteu S.H., Nurjanah N., Nurhayati T. (2018). Characteristics of brown seaweeds Sargassum policystum and Padina minor from Pohuwato water, Gorontalo. Jurnal Pengolahan Hasil Perikanan Indonesia. 21: 396-405. [DOI: 10.17844/jphpi. v21i3.24709] [DOI:10.17844/jphpi.v21i3.24709]
17. Marimuthu M., Gurumoorthi P. (2013). Phytochemical screening and FT-IR studies on wild and common South Indian legumes. Asian Journal of Pharmaceutical and Clinical Research. 6: 139-142.
18. Meyer B.N., Ferrigni N.R., Putnam J.E., Jacobsen L.B., Nichols D.E., McLaughlin J.L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica. 45: 31-34. [DOI: 10.1055/s-2007-971236] [DOI:10.1055/s-2007-971236]
19. Paul J.J.P., Yuvaraj P. (2013). Phytochemical analysis of Padina distromatica hauck. Indo American Journal of Pharmaceutical Research. 3.
20. Pesang M.D., Ngginak J., Kase A.G.O., Bisilissin C.L.B. (2020). Komposisi pigmen pada Ulva sp., Padina australis dan Hypnea sp. dari Pantai Tablolong Provinsi Nusa Tenggara Timur. Jurnal Kelautan Tropis. 23: 225-233. [DOI: 10.14710/jkt.v23i2.5912] [DOI:10.14710/jkt.v23i2.5912]
21. Prihatna K. (2001). Saponin untuk pembasmi hama udang. Penelitian perkebunan gambung. Bandung.
22. Qin Y. (2020). Chapter 29 - health benefits of bioactive seaweed substances. Handbook of Algal Science, Technology and Medicine. 2020: 455-466. [DOI: 10.1016/B978-0-12-818305-2.00029-2] [DOI:10.1016/B978-0-12-818305-2.00029-2]
23. Renhoran M., Noviendri D., Setyaningsih I., Uju. (2017). Extraction and purification of fucoxanthin from Sargassum sp. as anti-acne. Jurnal Pengolahan Hasil Perikanan Indonesia. 20: 370-379. [DOI: 10.17844/jphpi.v20i2.18105] [DOI:10.17844/jphpi.v20i2.18105]
24. Rupérez P. (2002). Mineral content of edible marine seaweeds. Food Chemistry. 79: 23-26. [DOI: 10.1016/S0308-8146(02) 00171-1] [DOI:10.1016/S0308-8146(02)00171-1]
25. Salosso Y., Aisiah S., Toruan L.N.L., Pasaribu W. (2020). Nutrient content, active compound, and antibacterial activity of Padina australis against Aeromonas hydropilla. Pharmacognosy Journal. 12: 771-776. [DOI: 10.5530/pj.2020.12.110] [DOI:10.5530/pj.2020.12.110]
26. Sanger G., Widjanarko S.B., Kusnadi J., Berhimpon S. (2013). Antioxidant activity of metanol extract of seaweeds obtained from North Sulawesi. Food Science and Quality Management. 19: 63-70.
27. Santoso J., Podungge F., Sumaryanto H. (2013). Chemical composition and antioxidant activity of tropical brown algae Padina australis from Pramuka Island, district of Seribu Island, Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis. 5: 287-297. [DOI: 10.28930/jitkt.v5i2.7558] [DOI:10.28930/jitkt.v5i2.7558]
28. Shannon E., Abu-Ghannam N. (2016). Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Marine Drugs. 14: 81. [DOI: 10.3390/ md14040081] [DOI:10.3390/md14040081] [PMID] [PMCID]
29. Wefer G. (1980). Carbonate production by algae Halimeda, Penicillus and Padina. Nature. 285: 323-324. [DOI: 10.1038/285323a0] [DOI:10.1038/285323a0]
30. Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helliwell K.E., Smith A.G., Camire M.E., Brawley S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology. 29: 949-982. [DOI: 10.1007/s10811-016-0974-5] [DOI:10.1007/s10811-016-0974-5] [PMID] [PMCID]
31. Wouthuyzen S., Abrar M., Lorwens J.D. (2015). Pengungkapan kejadian pemutihan karang tahun 2010 di perairan Indonesia melalui analisis suhu permukaan laut coral bleaching incidents of 2010 in Indonesian waters revealed through analysis of sea surface temperature. Oseanologi dan Limnologi di Indonesia. 1: 305-327.
32. Wu G. (2016). Dietary protein intake and human health. Food and Function. 7: 1251-1265. [DOI: 10.1039/C5FO01530H] [DOI:10.1039/C5FO01530H] [PMID]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb