Volume 9, Issue 3 (September 2022)                   J. Food Qual. Hazards Control 2022, 9(3): 137-146 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Obasi N, Obasi S, Ajala L, Aloh G, Aloke C, Ogundapo S et al . Nutrient Interaction and Health Risk Assessment of Cereal Grains on Nigerian’s Markets. J. Food Qual. Hazards Control 2022; 9 (3) :137-146
URL: http://jfqhc.ssu.ac.ir/article-1-903-en.html
Chemistry Research Unit, Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana, Nigeria , segunajala001@gmail.com
Abstract:   (378 Views)
Background: Cereals are the most staple foods in human diet and the main components of the daily diet. This work was designed to determine the level of essential and non-essential elements, the in vitro bioavailability, interrelationship, and associated health risk in consumed cereal grains in Nigeria to assess their safety and wholesomeness.
Methods: The contents of phytate, oxalate, and some major-, trace- and potentially toxic elements were determined in 36 samples of barley, maize, millet, rice, sorghum, and wheat marketed in Nigeria.
Results: The data showed variable significant (p<0.05) levels of elements, phytate, and oxalate in the cereals but they were below European commission maximum permissible limits. Estimated daily intakes (EDIs) of elements in the cereals were all below maximum permissible limits set by European Food Safety Authority (EFSA). Hazard Quotient (HQ) and Hazard Index (HI) values, though higher in children than adults, were less than one except in wheat and sorghum. The incremental lifetime Cancer Risk (CR) and Total Cancer Risk (TCR) values were below the threshold limit.
Conclusion: This study revealed that barley, maize, millet, rice, sorghum, and wheat available in Nigeria markets contain varying quantities of essential elements, potentially toxic elements, and antinutrients.

DOI: 10.18502/jfqhc.9.3.11152
Full-Text [PDF 642 kb]   (206 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/03/05 | Accepted: 22/07/28 | Published: 22/09/24

References
1. Abdelrahaman S.M., Elmaki H.B., Idris W.H., Hassan A.B., Babiker E.E., El-Tinay A.H. (2007). Antinutritional factor content and hydrochloric acid extractability of minerals in pearl millet cultivars as affected by germination. International Journal of Food Sciences and Nutrition. 58: 6-17. [DOI: 10.1080/09637480601093236] [DOI:10.1080/09637480601093236] [PMID]
2. Abdulrahman W.F., Omoniyi A.O. (2016). Proximate analysis and mineral compositions of different cereals available in Gwagwalada market, F.C.T, Abuja, Nigeria. Journal of Advances in Food Science and Technology. 3: 50-55.
3. Adams S.V., Quraishi S.M., Shafer M.M., Passarelli M.N., Freney E.P., Chlebowski R.T., Luo J., Meliker J.R., Mu L., Neuhouser M.L., Newcomb P.A. (2014). Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the women's health initiative. Environmental Health Perspectives. 122: 594-600. [DOI: 10.1289/ehp.1307054] [DOI:10.1289/ehp.1307054] [PMID] [PMCID]
4. Adeyeye E.I., Orisakeye O.T., Oyarekua M.A. (2012). Composition, mineral safety index, calcium, zinc and phytate interrelationships in four fast-foods consumed in Nigeria. Bulletin of the Chemical Society of Ethiopia. 26: 43-54. [DOI: 10.4314/ bcse.v26i1.5] [DOI:10.4314/bcse.v26i1.5]
5. Adubiaro H.O., Olaofe O., Akintayo E.T., Babalola O.O. (2011). Chemical composition, calcium, zinc and phytate interrelationships in baobab (Adansonia digitata) seed flour. Advance Journal of Food Science and Technology. 3: 228-232.
6. Agency for Toxic Substances and Disease Registry (ATSDR). (2018). Minimal Risk Levels (MRLs). URL: https://www. atsdr.cdc.gov/minimalrisklevels/index.html.
7. Ajala L.O., Apie C.O., Ejiagha M.C., Ominyi C.E. (2019). Interrelationship of minerals in non-alcoholic beverages marketed within Akanu Ibiam Federal Polytechnic, Unwana, Nigeria. Singapore Journal of Scientific Research. 9: 95-99. [DOI: 10.3923/sjsres.2019.95.99]
8. Ajala L.O., Okafor M.C., Ndukwe M.K., Okoro O.E., Ogundele G.J., Ogundele R.B. (2020). In vitro element bioavailability studies of some underutilized seeds in Southeast Nigeria. 199: 3977-3986. Biological Trace Element Research. [DOI: 10.1007/s12011-020-02507-y] [DOI:10.1007/s12011-020-02507-y] [PMID]
9. Ali J., Khan S., Khan A., Waqas M., Nasir M.J. (2020). Contamination of soil with potentially toxic metals and their bioaccumulation in wheat and associated health risk. Environmental Monitoring and Assessment. 192: 138. [DOI: 10.1007/s10661-020-8096-6] [DOI:10.1007/s10661-020-8096-6] [PMID]
10. Antoniadis V., Golia E.E., Liu Y.-T., Wang S.-L., Shaheen S.M., Rinklebe J. (2019). Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment International. 124: 79-88. [DOI: 10.1016/j.envint.2018.12.053] [DOI:10.1016/j.envint.2018.12.053] [PMID]
11. AOAC. (2000). Official methods of analysis. 17th edition. The Association of Official Analytical Chemists. Gaithersburg, MD, USA:
12. Baghaie A.H., Aghili F. (2019). Health risk assessment of Pb and Cd in soil, wheat, and barley in Shazand County, Central of Iran. Journal of Environmental Health Scienceand Engineering. 17: 467-477. [DOI: 10.1007/s40201-019-00365 -y] [DOI:10.1007/s40201-019-00365-y] [PMID] [PMCID]
13. Compaore W.F., Dumoulin A., Rousseau D.P.L. (2019). Trace element content in cereals from a gold mining site in Burkina Faso and intake risk assessment. Journal of Environmental Management. 248: 109292. [DOI: 10.1016/j.jenvman.2019. 109292] [DOI:10.1016/j.jenvman.2019.109292] [PMID]
14. El-Hassanin A.S., Samak M.R., Abdel-Rahman G.N., Abu-Sree Y.H., Saleh, E.M. (2020). Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. Toxicology Reports. 7: 10-15. [DOI: 10.1016/j.toxrep.2019. 11.018] [DOI:10.1016/j.toxrep.2019.11.018] [PMID] [PMCID]
15. European Commission. (2006). Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. Official Journal of European :union:. L 364: 5-24.
16. European Food Safety Authority (EFSA). (2012). Cadmium dietary exposure in the European population. EFSA Journal. 10: 2551. [DOI: 10.2903/j.efsa.2012.2551] [DOI:10.2903/j.efsa.2012.2551]
17. European Food Safety Authority (EFSA). (2014). Scientific opinion on dietary reference values for selenium. EFSA Journal. 12: 3846. [DOI: 10.2903/j.efsa.2014.3846] [DOI:10.2903/j.efsa.2014.3846]
18. Flora G., Gupta D., Tiwari A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary. Toxicology. 5: 47-58. [DOI: 10.2478/v10102-012-0009-2] [DOI:10.2478/v10102-012-0009-2] [PMID] [PMCID]
19. Gemede H.F. (2020). Nutritional and antinutritional evaluation of complementary foods formulated from maize, pea, and anchote flours. Food Science and Nutrition. [DOI: 10.1002/ fsn3.1516] [DOI:10.1002/fsn3.1516] [PMID] [PMCID]
20. Gemede H.F., Ratta N. (2018). Anti dietary factors in plant foods: potential health benefits and adverse effects. Advanced Research Journal of Microbiology. 5: 100-113.
21. Gruszecka-Kosowska A. (2020). Human health risk assessment and potentially harmful element contents in the cereals cultivated on agricultural soils. International Journal of Environmental Research and Public Health. 17: 1674. [DOI: 10. 3390/ijerph17051674] [DOI:10.3390/ijerph17051674]
22. Hailu A.A., Addis G. (2016). The content and bioavailability of mineral nutrients of selected wild and traditional edible plants as affected by household preparation methods practiced by local community in Benishangul Gumuz regional state, Ethiopia. International Journal of Food Science. 2016. [DOI: 10. 1155/2016/7615853] [DOI:10.1155/2016/7615853] [PMID] [PMCID]
23. Hathcock J.N. (2014). Vitamins and mineral safety. 3rd edition. Council for Responsible Nutrition, Washington, DC.
24. Huang Z., Pan X.-D., Wu P.-G., Han J.-L., Chen Q. (2013). Health risk assessment of heavy metals in rice to the population in Zhejiang, China. Plus One. 8: e75007. [DOI: 10.1371 /journal.pone.0075007] [DOI:10.1371/journal.pone.0075007] [PMID] [PMCID]
25. Institute of Medicine. (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press, Washington, DC. [DOI: 10.17226/10026] [DOI:10.17226/10026]
26. Inuwa H.M., Aina V.O., Gabi B., Aimola I., Toyin A. (2011). Comparative determination of antinutritional factors in groundnut oil and palm oil. Advance Journal of Food Science and Technology. 3: 275-279.
27. Islam S., Ahmed K., Habibullah-Al-Mamun., Raknuzzaman M. (2015). The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicology and Environmental Safety. 122: 462-469. [DOI: 10.1016/j.ecoenv.2015.09.022] [DOI:10.1016/j.ecoenv.2015.09.022] [PMID]
28. Jākobsone I., Kantāne I., Zute S., Jansone I., Bartkevičs V. (2015). Macro-elements and trace elements in cereal grains cultivated in Latvia. Proceedings of the Latvian Academy of Sciences. 69: 152-157. [DOI: 10.1515/prolas-2015-0022] [DOI:10.1515/prolas-2015-0022]
29. Janoska O., Gruszecka-Kosowska A. (2020). Water quality and human health risk assessment: a case study of the Czarna Przemsza river source in Zawiercie, Poland. Human and Ecological Risk Assessment: An International Journal. 26: 757-781. [DOI: 10.1080/10807039.2018.1536520] [DOI:10.1080/10807039.2018.1536520]
30. Khan M.A., Mehmood S., Ullah F., Khattak A., Zeb M.A. (2017). Health risks assessment diagnosis of toxic chemicals (heavy metals) via food crops consumption irrigated with wastewater. Sains Malaysiana. 46: 917-924. [DOI: 10.17576/ jsm-2017-4606-11] [DOI:10.17576/jsm-2017-4606-11]
31. Landrigan P.J., Goldman L.R. (2011). Children's vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy. Health Affairs. 30: 842-850. [DOI: 10.1377/hlthaff.2011.0151] [DOI:10.1377/hlthaff.2011.0151] [PMID]
32. Lopez H.W., Leenhardt F., Coudray C., Remesy C. (2002). Minerals and phytic acid interactions: is it a real problem for human nutrition?. International Journal of Food Science andTechnology. 37: 727-739. [DOI: 10.1046/j.1365-2621.2002. 00618.x] [DOI:10.1046/j.1365-2621.2002.00618.x]
33. Magna E.K., Dabi M., Badu E., Owusu P. (2018). Determination of heavy metals and potential health risk assessment of honey harvested from the Tamale metropolis of Ghana using atomic absorption spectrophotometer (AAS). Elixir Pollution. 21: 51522-51525.
34. Mao C., Song Y., Chen L., Ji J., Li J., Yuan X., Yang Z., Ayoko G.A., Frost R.L., Theiss F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena. 175: 339-348. [DOI: 10.1016/j.catena.2018.12.029] [DOI:10.1016/j.catena.2018.12.029]
35. Martinez V.D., Vucic E.A., Becker-Santos D.D., Gil L., Lam W.L. (2011). Arsenic exposure and the induction of human cancers. Journal of Toxicology. 2011. [DOI: 10.1155/2011/ 431287] [DOI:10.1155/2011/431287] [PMID] [PMCID]
36. McDowell L.R. (2003). Minerals in animal and human nutrition. 2nd edition. Elsevier Science, B.V, Netherlands. [DOI:10.1016/B978-0-444-51367-0.50010-6]
37. Mohammed M.I., Ahmad U.M. (2014). Mineral elements content of some coarse grains used as staple food in Kano metropolis, Nigeria. Bayero Journal of Pure and Applied Sciences. 7: 85-89. [DOI: 10.4314/bajopas.v7i1.16] [DOI:10.4314/bajopas.v7i1.16]
38. Obasi N.A., Obasi S.E., Nweze E., Amadi S.O., Aloke C., Aloh G.O. (2020). Metal pollution and human health risk assessment of soils and edible plants in farmlands around Enyigba lead-zinc mining site, Ebonyi state, Nigeria. Environmental Monitoring Assessment. 192: 292. [DOI: 10.1007/s10661-020-08280-8] [DOI:10.1007/s10661-020-08280-8] [PMID]
39. Pirsaheb M., Fattahi N., Sharafi K., Khamotian R., Atafar Z. (2015). Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment. Food Additives and Contaminants: Part B. 9: 15-20. [DOI: 10.1080/19393210. 2015.1099570] [DOI:10.1080/19393210.2015.1099570] [PMID]
40. Prasanthi P.S., Naveena N., Vishnuvardhana Rao M., Bhaska-rachary K. (2017). Compositional variability of nutrients and phytochemicals in corn after processing. Journal of Food Science and Technology. 54: 1080-1090. [DOI: 10.1007/s13197-017-2547-2] [DOI:10.1007/s13197-017-2547-2] [PMID] [PMCID]
41. Rahman M., Islam M.A. (2019). Concentrations and health risk assessment of trace elements in cereals, fruits, and vegetables of Bangladesh. Biological Trace Element Research. 191: 243-253. [DOI: 10.1007/s12011-018-1596-3] [DOI:10.1007/s12011-018-1596-3] [PMID]
42. Satpathy D., Reddy M.V., Dhal S.P. (2014). Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East coast of India. Biomed Research International. 2014. [DOI: 10.1155/2014/545473] [DOI:10.1155/2014/545473] [PMID] [PMCID]
43. Silbergeld E.K., Waalkes M., Rice J.M. (2000). Lead as a carcinogen: experimental evidence and mechanisms of action. American Journal of Industrial Medicine. 38: 316-323. [DOI: 10.1002/1097-0274(200009)38:3<316::AID-AJIM11>3.0.CO;2-P] https://doi.org/10.1002/1097-0274(200009)38:3<316::AID-AJIM11>3.0.CO;2-P [DOI:10.1002/1097-0274(200009)38:33.0.CO;2-P] [PMID]
44. Šukalić A., Ahmetović N., Maćkić S., Leto A., Džubur A., Antunović B. (2018). Human health risk assessment of heavy metals from the agricultural soil in South Herzegovina. Agriculturae Conspectus Scientificus. 83: 45-50. [DOI:10.5937/AASer1845051S]
45. Wang M., Liang B., Zhang W., Chen K., Zhang Y., Zhou H., Cheng Y., Liu H., Zhong X., Li Y., Liu Y. (2019). Dietary lead exposure and associated health risks in Guangzhou, China. International Journal of Environmental Research and Public Health. 16: 1417. [DOI: 10.3390/ijerph16081417] [DOI:10.3390/ijerph16081417] [PMID] [PMCID]
46. Watts D.L. (2010). HTMA mineral ratios: a brief discussion of their clinical importance. Trace Elements Newsletter. 21.
47. Wcisło E., Bronder J., Bubak A., Rodríguez-Valdès E., Gallego J.L.R. (2016). Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environment International. 94: 436-448. [DOI: 10.1016/j. envint.2016.05.028] [DOI:10.1016/j.envint.2016.05.028] [PMID]
48. Winiarska-Mieczan A., Zaricka E., Kwiecień M., Kwiatkowska K., Baranowska-Wójcik E., Danek-Majewska A. (2020). Can cereal products be an essential source of Ca, Mg and K in the deficient diets of poles?. Biological Trace Element Research. 195: 317-322. [DOI: 10.1007/s12011-019-01826-z] [DOI:10.1007/s12011-019-01826-z] [PMID] [PMCID]
49. Yeganeh M., Afyuni M., Khoshgoftarmanesh A.-H., Soffianian A.-R., Schulin R. (2012). Health risks of metals in soil, water, and major food crops in Hamedan province, Iran. Human Ecological Risk Assessment. 18: 547-568. [DOI: 10.1080/10807039. 2012.672886] [DOI:10.1080/10807039.2012.672886]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb