Volume 9, Issue 2 (June 2022)                   J. Food Qual. Hazards Control 2022, 9(2): 88-97 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sringarm C, Numthuam S, Salabsee S, Ditudompo S, Kunanopparat T, Rungchang S. Prediction of Freshness Quality and Phosphate Residue of White Shrimp Products Using Near-Infrared Spectroscopy. J. Food Qual. Hazards Control 2022; 9 (2) :88-97
URL: http://jfqhc.ssu.ac.ir/article-1-1002-en.html
Faculty of Agriculture Natural Resources and Environment, Naresuan University, Mueang, Phitsanulok 65,000, Thailand , saowalukr@nu.ac.th
Abstract:   (715 Views)
 Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp.
Methods: Sixty white shrimp samples of a size of 70-80 shrimp/kg were stored at 4 ˚C. The sample was divided into two groups by soaking in two kinds of phosphate solutions, including Sodium Tripolyphosphate (STPP) and Mixed Phosphate (NAN101). The samples were evaluated using NIR which was performed before freezing and seven days after freezing. Calibration models of the freshness and phosphate residues of fresh and frozen shrimp products were built by Partial Least Square (PLS) regression between the spectral data and the reference methods.
Results: Satisfactory PLS results were obtained from the calibration model of TVB-N of chopped shrimp with a correlation coefficient (R) of 0.94 and Ratio of Prediction to Deviation (RPD) of 3.07. However, the NIR data indicated an unreliable prediction for the WHC (R<0.5). For the determination of phosphate residuals from STPP and NAN 101, the best calibration results were R>0.94 and RPD>3.00.
Conclusion: The NIR spectroscopy was feasible for monitoring the TVB-N as well as phosphate residues of shrimp products.

DOI: 10.18502/jfqhc.9.2.10645
Full-Text [PDF 734 kb]   (505 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/11/25 | Accepted: 22/03/15 | Published: 22/06/27

References
1. Association of Official Analytical Chemist (AOAC). (1995). Official methods of analysis of AOAC international. 16th edition. Washington DC, USA
2. Baka R., Kunanopparat T., Rungchang S., Ditudompo S., Siriwattanayotin S. (2018). Reduction of the phosphate soaking time required for shrimp products using pulsed vacuum condition. Journal of Aquatic Food Product Technology. 27: 795-802. [DOI: 10.1080/10498850.2018.1499162] [DOI:10.1080/10498850.2018.1499162]
3. Brodersen K., Bremner H.A. (2001). Exploration of the use of NIR reflectance spectroscopy to distinguish and measure attributes of conditioned and cooked shrimp (Pandalus borealis). LWT-Food Science and Technology. 34: 533-541. [DOI: 10.1006/ fstl.2001.0802] [DOI:10.1006/fstl.2001.0802]
4. Büning-Pfaue H. (2003). Analysis of water in food by near infrared spectroscopy. Food Chemistry. 82: 107-115. [DOI: 10.1016/S0308-8146(02)00583-6] [DOI:10.1016/S0308-8146(02)00583-6]
5. Cai J., Chen Q., Wan X., Zhao J. (2011). Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy. Food Chemistry. 126: 1354-1360. [DOI: 10.1016/j.foodchem.2010.11.098] [DOI:10.1016/j.foodchem.2010.11.098]
6. Cruz-Tirado J.P., Amigo J.M., Barbin D.F. (2022). Determination of protein content in single black fly soldier (Hermetia illucens L.) larvae by near infrared hyperspectral imaging (NIR-HSI) and chemometrics. Food Control. 143: 109266. [DOI: 10. 1016/j.foodcont.2022.109266] [DOI:10.1016/j.foodcont.2022.109266]
7. Da Costa Filho P.A. (2009). Rapid determination of sucrose in chocolate mass using near infrared spectroscopy. Analytica Chimica Acta. 631: 206-211. [DOI: 10.1016/j.aca.2008.10. 049] [DOI:10.1016/j.aca.2008.10.049] [PMID]
8. Dai Q., Cheng J.-H., Sun D.-W., Zhu Z., Pu H. (2016). Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis). Food Chemistry. 197: 257-265. [DOI: 10.1016/j.foodchem.2015.10.073] [DOI:10.1016/j.foodchem.2015.10.073] [PMID]
9. Don S., Xavier K.A.M., Devi S.T., Nayak B.B., Kannuchamy N. (2018). Identification of potential spoilage bacteria in farmed shrimp (Litopenaeus vannamei): application of relative rate of spoilage models in shelf life-prediction. LWT - Food Science and Technology. 97: 295-301. [DOI: 10.1016/j.lwt.2018.07. 006] [DOI:10.1016/j.lwt.2018.07.006]
10. Ely D.R., Thommes M., Carvajal M.T. (2008). Analysis of the effects of particle size and densification on NIR spectra. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 331: 63-67. [DOI: 10.1016/j.colsurfa.2008.07.017] [DOI:10.1016/j.colsurfa.2008.07.017]
11. GuÐjónsdóttir M., Van Nguyen M., Jónsson Á., Bergsson A.B., Arason S. (2011). Near infrared spectroscopy for seafood process optimisation and monitoring-a shrimp case study. NIR News. 22: 12-14. [DOI: 10.1255/nirn.1257] [DOI:10.1255/nirn.1257]
12. Guðjónsdóttir M. (2011). Quality changes during seafood processing as studied with NMR and NIR spectroscopy
13. Huang L., Zhao J., Chen Q., Zhang Y. (2014). Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chemistry. 145: 228-236. [DOI: 10.1016/j.foodchem.2013.06.073] [DOI:10.1016/j.foodchem.2013.06.073] [PMID]
14. Huang Q., Chen Q., Li H., Huang G., Ouyang Q., Zhao J. (2015). Non-destructively sensing pork's freshness indicator using near infrared multispectral imaging technique. Journal of Food Engineering. 154: 69-75. [DOI: 10.1016/j.jfoodeng. 2015.01.006] [DOI:10.1016/j.jfoodeng.2015.01.006]
15. Huang X., Xu H., Wu L., Dai H., Yao L., Han F. (2016). A data fusion detection method for fish freshness based on computer vision and near-infrared spectroscopy. Analytical Methods. 8: 2929-2935. [DOI: 10.1039/C5AY03005F] [DOI:10.1039/C5AY03005F]
16. Huff-Lonergan E., Baas T.J., Malek M., Dekkers J.C.M., Prusa K., Rothschild M.F. (2002). Correlations among selected pork quality traits. Journal of Animal Science. 80: 617-627. [DOI: 10.2527/2002.803617x] [DOI:10.2527/2002.803617x] [PMID]
17. Kennard R.W., Stone L.A. (1969). Computer aided design of experiments. Technometrics. 11: 137-148. [DOI: 10.1080/ 00401706.1969.10490666] [DOI:10.1080/00401706.1969.10490666]
18. Manley M. (2014). Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chemical Society Reviews. 43: 8200-8214. [DOI: 10.1039/ c4cs00062e] [DOI:10.1039/C4CS00062E] [PMID]
19. Manley M., McGill A.E.J., Osborne B.G. (1994). The effect of light scattering on NIR reflectance and transmittance spectra of wheat. Journal of Near Infrared Spectroscopy. 2: 93-99. [DOI: 10.1255/jnirs.36] [DOI:10.1255/jnirs.36]
20. Nirmal N.P., Benjakul S. (2011). Retardation of quality changes of Pacific white shrimp by green tea extract treatment and modified atmosphere packaging during refrigerated storage. International Journal of Food Microbiology. 149: 247-253. [DOI: 10.1016/j.ijfoodmicro.2011.07.002] [DOI:10.1016/j.ijfoodmicro.2011.07.002] [PMID]
21. Numthuam S., Hongpathong J., Charoensook R., Rungchang S. (2017). Method development for the analysis of total bacterial count in raw milk using near-infrared spectroscopy. Journal of Food Safety. 37: e12335. [DOI: 10.1111/jfs.12335] [DOI:10.1111/jfs.12335]
22. Okpala C.O.R., Choo W.S., Dykes G.A. (2014). Quality and shelf life assessment of Pacific white shrimp (Litopenaeus vannamei) freshly harvested and stored on ice. LWT - Food Science and Technology. 55: 110-116. [DOI: 10.1016/j.lwt. 2013.07.020] [DOI:10.1016/j.lwt.2013.07.020]
23. Osborne B.G. (2006). Near-infrared spectroscopy in food analysis. Encyclopedia of Analytical Chemistry. [DOI: 10.1002/ 9780470027318.a1018]
24. Ottestad S., Høy M., Stevik A., Wold J.P. (2009). Prediction of ice fraction and fat content in super-chilled salmon by non-contact interactance near infrared imaging. Journal of Near Infrared Spectroscopy. 17: 77-87. [DOI: 10.1255/jnirs.827] [DOI:10.1255/jnirs.827]
25. Panseri S., Arioli F., Biolatti C., Mosconi G., Pavlovic R., Chiesa L.M. (2020). Detection of polyphosphates in seafood and its relevance toward food safety. Food Chemistry. 332: 127397. [DOI: 10.1016/j.foodchem.2020.127397] [DOI:10.1016/j.foodchem.2020.127397] [PMID]
26. Pasikatan M.C., Steele J.L., Spillman C.K., Haque E. (2001). Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials. Journal of NearInfrared Spectroscopy. 9: 153-164. [DOI: 10.1255/jnirs.303] [DOI:10.1255/jnirs.303]
27. Porep J.U., Kammerer D.R., Carle R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science and Technology. 46: 211-230. [DOI: 10.1016/j.tifs.2015.10.002] [DOI:10.1016/j.tifs.2015.10.002]
28. Prevolnik M., Čandek-Potokar M., Škorjanc D. (2010). Predicting pork water-holding capacity with NIR spectroscopy in relation to different reference methods. Journal of Food Engineering. 98: 347-352. [DOI: 10.1016/j.jfoodeng.2009.11.022] [DOI:10.1016/j.jfoodeng.2009.11.022]
29. Pu Y.-Y., O'Donnell C., Tobin J.T., O'Shea N. (2020). Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. International Dairy Journal. 103: 104623. [DOI: 10.1016/j. idairyj.2019.104623] [DOI:10.1016/j.idairyj.2019.104623]
30. Qiao L., Tang X., Dong J. (2017). A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation. Food Chemistry. 237: 1179-1185. [DOI: 10.1016/j.foodchem.2017.06.031] [DOI:10.1016/j.foodchem.2017.06.031] [PMID]
31. Simeone M.L.F., Parrella R.A.C., Schaffert R.E., Damasceno C.M.B., Leal M.C.B., Pasquini C. (2017). Near infrared spectroscopy determination of sucrose, glucose and fructose in sweet sorghum juice. Microchemical Journal. 134: 125-130. [DOI: 10.1016/j.microc.2017.05.020] [DOI:10.1016/j.microc.2017.05.020]
32. Sriket P., Benjakul S., Visessanguan W., Kijroongrojana K. (2007). Comparative studies on chemical composition and thermal properties of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) meats. Food Chemistry. 103: 1199-1207. [DOI: 10.1016/j.foodchem.2006.10.039] [DOI:10.1016/j.foodchem.2006.10.039]
33. Sringarm C., Numthuam S., Singanusong R., Jiamyangyuen S., Kittiwatchana S., Funsueb S., Rungchang S. (2022). Quantitative determination of quality control parameters using near infrared spectroscopy and chemometrics in process monitoring of tapioca sweetener production. LWT - Food Science and Technology. 167: 113876. [DOI: 10.1016/j.lwt.2022.113876] [DOI:10.1016/j.lwt.2022.113876]
34. Tamburini E., Vincenzi F., Costa S., Mantovi P., Pedrini P.,Castaldelli G. (2017). Effects of moisture and particle size on quantitative determination of total organic carbon (TOC) in soils using near-infrared spectroscopy. Sensors. 17: 2366. [DOI: 10.3390/s17102366] [DOI:10.3390/s17102366] [PMID] [PMCID]
35. Todd A.M. (2011). Utilizing near-infrared spectroscopy to detect sodium tripolyphosphate in treated Penaeus aztecus and setiferus shrimp. LSU Master's Theses. 2353. [DOI: 10.31390/gradschool_theses.2353] [DOI:10.31390/gradschool_theses.2353]
36. Wu D., Sun D.-W. (2013). Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta. 116: 266-276. [DOI: 10.1016/j.talanta.2013.05.030] [DOI:10.1016/j.talanta.2013.05.030] [PMID]
37. Zhang B., Ma L.-K., Deng S.-G., Xie C., Qiu X.-H. (2015). Shelf-life of pacific white shrimp (Litopenaeus vannamei) as affected by weakly acidic electrolyzed water ice-glazing and modified atmosphere packaging. Food Control. 51: 114-121. [DOI: 10.1016/j.foodcont.2014.11.016] [DOI:10.1016/j.foodcont.2014.11.016]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb