Volume 9, Issue 4 (December 2022)                   J. Food Qual. Hazards Control 2022, 9(4): 190-198 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nwaehujor I, Inana M, Azeke E, Okoroafor C, Abdulbaki M, Okike O et al . Microbial and Fungal Contamination of Staple Foods in Port Harcourt, Nigeria: Special Attention to High Aflatoxin Risk. J. Food Qual. Hazards Control 2022; 9 (4) :190-198
URL: http://jfqhc.ssu.ac.ir/article-1-1010-en.html
Nigerian Stored Products Research Institute, Mile 4, Ikwere Road, Rumueme, P.M.B. 5,063, Port-Harcourt, Nigeria , okoroaforchinedu@gmail.com
Abstract:   (575 Views)
Background: Microbial and fungal contamination of agricultural produce has been a health challenge over the years. The present study surveyed microbial and aflatoxin contamination in groundnut, maize, and cowpea collected from Port Harcourt, Nigeria.
Methods: Ninety samples of maize, groundnut, and cowpea were purchased from six major markets in Port Harcourt, Nigeria. The samples were first examined for insect pest infestation, then Moisture Content (MC), microbial, and aflatoxin contamination. Characterization of bacterial isolates was determined based on their morphological and cultural characteristics. Statistical analyses were performed using SPSS 20.0
Results: Data showed that 50% of groundnut samples and 33.33% of maize samples had total aflatoxins levels above World Health Organization (WHO) acceptable limits of 0.5-15 µg/kg. MC for groundnut, maize, and cowpea samples significantly ranged from 2.48-5.55%, 9.00-11.25%, and 9.50-12.48%, respectively. The mean bacterial count for groundnut, maize, and cowpea samples ranged from 0.7×108-1.7×108 Colony Forming Unit (CFU)/g, 0.3×108-1.7×108 CFU/g, and 0.7×108-1.9×108 CFU/g, respectively. Bacterial isolates, including Pseudomonas sp., Streptococcus sp., and Clostridium sp. were isolated from groundnut while Bacillus sp., Staphylococcus sp., Proteus sp., and Escherichia coli were isolated from maize and cowpea. Fungal isolates, including Aspergillus flavus and A. niger were isolated from groundnut and maize.
Conclusion: This study revealed the health risk exposure of consumers of the assayed staples in Port Harcourt of Nigeria, especially groundnut which had very high aflatoxin levels in most of the markets.

DOI: 10.18502/jfqhc.9.4.11374
Full-Text [PDF 343 kb]   (292 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/04/05 | Accepted: 22/09/13 | Published: 22/12/29

References
1. Abdolshahi A., Shokrollahi Yancheshmeh B. (2020). Food contamination. In: Sabuncuoğlu S. (Editor). Mycotoxins and food safety. Intech Open, London. pp: 5-16. [DOI: 10.5772/ intechopen.89802] [DOI:10.5772/intechopen.89802]
2. Adetunji M., Atanda O., Ezekiel C.N., Sulyok M., Warth B., Beltrán E., Krska R., Obadina O., Bakare A., Chilaka C.A. (2014). Fungal and bacterial metabolites of stored maize (Zea mays L.) from five agro-ecological zones of Nigeria. Mycotoxin Research. 30: 89-102. [DOI: 10.1007/s12550-014-0194-2] [DOI:10.1007/s12550-014-0194-2] [PMID]
3. Adetunji M.C., Akinola S.A., Nleya N., Mulunda M. (2020). Nutrient composition and aflatoxin contamination of African sourced peanuts and cashew nuts: its implication on health. In: Rao V., Rao L., Ahiduzzaman, Aminul Islam A.K.M. (Editors). Nuts and nut products in human health and nutrition. Intech Open, London. pp: 87-113.
4. Adeyeye S.A.O. (2016). Fungi mycotoxins in foods: a review. Cogent Food and Agriculture. 2: 1213127. [DOI: 10.1080/ 23311932.2016.1213127] [DOI:10.1080/23311932.2016.1213127]
5. Akbari P., Braber S., Varasteh S., Alizadeh A., Garssen J., Fink-Gremmels J. (2017). The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Archives of Toxicology. 91: 1007-1029. [DOI: 10.1007/s00204-016-1794-8] [DOI:10.1007/s00204-016-1794-8] [PMID] [PMCID]
6. Anthony M.H., Francis D.M., Berka N.P., Ayinla G.T., Haruna O.G. (2012). Aflatoxin contamination in foods and feeds: a special focus on Africa. In: Eissa A.H.A. (Editor). Trends in vital food and control engineering. Intech, Rijeka, Croatia. pp: 187-230.
7. AOAC International. (2016). Official methods of analysis of AOAC international. 20th edition. Association of Official Analytical Chemists. Washington, DC.
8. Ashamo M.O., Ileke K.D., Ogungbite O.C. (2021). Entomotoxicity of some agro-wastes against cowpea bruchid, Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae] infesting cowpea seeds in storage. Heliyon. 7: e07202. [DOI: 10.1016/ j.heliyon.2021.e07202] [DOI:10.1016/j.heliyon.2021.e07202] [PMID] [PMCID]
9. Atanda O., Makun H.A., Ogara I.M., Edema M., Idahor K.O., Eshiett M.E., Oluwabamiwo B.F. (2013). Fungal and mycotoxin contamination of Nigerian foods and feeds. In: Makun H.A. (Editor). Mycotoxin and food safety in developing countries. Intech, Rijeka, Croatia. pp: 3-38. [DOI:10.5772/55664]
10. Atehnkeng J., Ojiambo P.S., Donner M., Ikotun T., Sikora R.A., Cotty P.J., Bandypadhyay R. (2008). Distribution and toxicity of Aspergillus species isolated from maize kernels from three agro-ecological zones of Nigeria. International Journal of Food Microbiology. 122: 74-84. [DOI: 10.1016/j.ijfoodmicro. 2007.11.062] [DOI:10.1016/j.ijfoodmicro.2007.11.062] [PMID]
11. Bankole S.A., Adebanjo A. (2003). Mycotoxins in food in West Africa: current situation and possibilities controlling it. African Journal of Biotechnology. 2: 254-263. [DOI: 10.5897/AJB2003.000-1053] [DOI:10.5897/AJB2003.000-1053]
12. Benkerroum N. (2020). Aflatoxins: producing-molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African countries. International Journal of Environmental Research and Public Health. 17: 1215. [DOI: 10.3390/ijerph17041215] [DOI:10.3390/ijerph17041215] [PMID] [PMCID]
13. Centre for Disease Control and Prevention (CDC). (2004). Outbreak of aflatoxin poisoning in eastern and central provinces of Kenya. Morbidity and Mortality Weekly Report. 53:790-793.
14. Chauhan Y.S., Wright G.C., Rachaputi N.C. (2008). Modelling climatic risks of aflatoxin contamination in maize. Australian Journal of Experimental Agriculture. 48: 358-366. [DOI: 10.1071/EA06101] [DOI:10.1071/EA06101]
15. Chigoziri E., Temitope O.B. (2020). Assessment of fungi incidence, seed germination and aflatoxin contamination of groundnut (Arachis hypogaea L.) from Lagos, Nigeria. GSC Biological and Pharmaceutical Sciences. 11: 216-223. [DOI: 10.30574/gscbps.2020.11.3.0185] [DOI:10.30574/gscbps.2020.11.3.0185]
16. Douglas S.I., Robinson V.K. (2018). Fungal pollution of indoor air of some health facilities in Rivers State. International Journal of Tropical Disease and Health. 32: 1-7. [DOI: 10.9734/ IJTDH/2018/44134] [DOI:10.9734/IJTDH/2018/44134]
17. Douglas S.I., Robinson V.K. (2019). Indoor microbiological air quality in some wards of a tertiary health institution in Port Harcourt, Nigeria. Journal of Pharmacy and Biological Sciences. 14: 44-50. [DOI: 10.9790/3008-1401034450]
18. Eaton D.L., Gallagher E.P. (1994). Mechanisms of aflatoxin carcinogenesis. Annual Review of Pharmacology and Toxicology. 34: 135-172. [DOI:10.1146/annurev.pa.34.040194.001031] [PMID]
19. EFSA Panel on Biological Hazards (BIOHAZ). (2011). Scientific opinion on an update on the present knowledge on the occurrence and control of foodborne viruses. EFSA Journal. 9: 2190. [DOI: 10.2903/j.efsa.2011.2190] [DOI:10.2903/j.efsa.2011.2190] [PMID] [PMCID]
20. El Tawila M., Sadeq S., Awad A.A., Serdar J., Madkour M.H.F., Deabes M.M. (2020). Aflatoxins contamination of human food commodities collected from Jeddah markets, Saudi Arabia. Open Access Macedonian Journal of Medical Sciences. 8: 117-126. [DOI: 10.3889/oamjms.2020.4643] [DOI:10.3889/oamjms.2020.4643]
21. Ezechukwu C.C., Szlatcheka R. (2001). An unusual source of poisoning. Nigerian Journal of Clinical Practice. 4: 37-39.
22. Hammond S.T., Brown J.H., Burger J.R., Flanagan T.P., Fristoe T.S., Mercado-Silva N., Nekola J.C., Okie J.G. (2015). Food spoilage, storage, and transport: implications for a sustainable future. BioScience. 65: 758-768. [DOI: 10.1093/biosci/ biv081] [DOI:10.1093/biosci/biv081]
23. Ho J., Boost M.V., O'Donoghue M.M. (2015). Tracking sources of Staphylococcus aureus hand contamination in food handlers by spa typing. American Journal of Infection Control. 43: 759-761. [DOI: 10.1016/j.ajic.2015.03.022] [DOI:10.1016/j.ajic.2015.03.022] [PMID] [PMCID]
24. Houssou P.A., Ahuhuendo B.C., Fandohan P., Kpodo K., Hounhouigan D.J., Jakobsen M. (2009). Natural infection of cowpea (Vigna unguiculata (L.) Walp.) by toxigenic fungi and mycotoxins in Benin, West Africa. Journal of Stored Products and Research. 45: 40-44. [DOI: 10.1016/j.jspr.2008. 07.002] [DOI:10.1016/j.jspr.2008.07.002]
25. Ibrahim B., Saka K.H., Farida U.A., Abdullah T.I., Ahmad K.Y., Adamu A.A., Bamishaiye E.I. (2021). Impact of sorting and washing on total aflatoxin contaminations of some selected food stuffs in kano market. Journal of Agricultural Economics, Environment and Social Science. 7: 104-114.
26. Ikpesu T.O., Ariyo A.B. (2013). Health implication of excessive use and abuse of pesticides by the rural dwellers in developing countries: the need for awareness. Greener Journal of Environmental Management and Public Safety. 2: 180-188. [DOI: 10.15580/GJEMPS.2013.5.071113721] [DOI:10.15580/GJEMPS.2013.5.071113721]
27. Ileke K.D. (2015). Entomotoxicant potential of bitter leaf, Vernonia amygdalina powder in the control of cowpea bruchid, Callosobruchus maculatus (Coleoptera: Chrysomelidae) infesting stored cowpea seeds. Octa Journal of Environmental Research. 3: 226-234.
28. Ileke K.D. (2019). The efficacy of Alstonia boonei stembark oil as a long-term storage protectant against cowpea bruchid, Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). Jordan Journal of Biological Sciences. 12: 329-337.
29. Ileke K.D., Adesina J.M., Abidemi-Iromini A.O., Abdulsalam M.S. (2021). Entomocide effect of Alstonia boonei de wild on reproductive performance of Dermestes maculatus (Coleoptera: dermestidae) infestation on smoked catfish Claria gariepinus (pisces: Clariidea). International Journal of Tropical Insect Science. 41: 1293-1304. [DOI: 10.1007/s42690-020-00321-6] [DOI:10.1007/s42690-020-00321-6]
30. International Agency for Research on Cancer (IARC). (2012). A review of human carcinogens. Chemical agents and related occupations. IARC monographs on the evaluation of carcinogenic risks to humans. 100F. Lyon, France. URL: https://monographs.iarc.who.int/wp-content/uploads/2018/06/ mono100F.pdf.
31. Jeyaramraja P.R., Meenakshi S.N., Woldesenbet F. (2018). Relationship between drought and preharvest aflatoxin contamination in groundnut (Arachis hypogaea L.). World Mycotoxin Journal. 11: 187-199. [DOI: 10.3920/WMJ2017.2248] [DOI:10.3920/WMJ2017.2248]
32. Kamika I., Takoy L.L. (2011). Natural occurrence of Aflatoxin B1 in peanut collected from Kinshasa, Democratic Republic of Congo. Food Control. 22: 1760-1764. [DOI: 10.1016/j. foodcont.2011.04.010] [DOI:10.1016/j.foodcont.2011.04.010]
33. Kharel N., Palni U., Tamang J.P. (2016). Microbiological assessment of ethnic street foods of the Himalayas. Journal of Ethnic Foods. 3: 235-241. [DOI: 10.1016/j.jef.2016.01.001] [DOI:10.1016/j.jef.2016.01.001]
34. Kidd S., Halliday C., Alexiou H., Ellis D. (2016). Descriptions of medical fungi. 3rd edition. Newstyle Printing, Australia.
35. Kinyungu S.W. (2019). Efficacy of pre-harvest Aspergillus flavus biocontrol treatment on reducing aflatoxin accumulation during drying. Doctoral dissertation, Purdue University Graduate School. URL: file:///C:/Users/admin/Downloads/ Sha-ron%20Wanjiru%20Kinyungu%20%20Thesis. pdf.
36. Kumar A., Pathak H., Bhadauria S., Sudan J. (2021). Aflatoxin contamination in food crops: causes, detection, and management: a review. Food Production, Processing and Nutrition. 3: 17. [DOI: 10.1186/s43014-021-00064-y] [DOI:10.1186/s43014-021-00064-y]
37. Meijer N., Kleter G., De Nijs M., Rau M-L., Derkx R., Van Der Fels-Klerx H. (2021). The aflatoxin situation in Africa: systematic literature review. Comprehensive Reviews in Food Science and Food Safety. 20: 2286-2304. [DOI: 10.1111/ 1541-4337.12731] [DOI:10.1111/1541-4337.12731] [PMID]
38. Meneely J.P., Kolawole O., Haughey S.A., Miller S.J., Krska R., Elliott C.T. (2022). The challenge of global aflatoxins legislation with a focus on peanuts and peanut products: a systematic review. Exposure and Health. [DOI: 10.1007/ s12403-022-00499-9] [DOI:10.1007/s12403-022-00499-9]
39. Mutegi C.K., Ngugi H.K., Hendriks S.L., Jones R.B. (2009). Prevalence and factors associated with aflatoxin contamination of peanuts from western Kenya. International Journal of Food Microbiology. 130: 27-34. [DOI: 10.1016/j. ijfoodmicro.2008.12.030] [DOI:10.1016/j.ijfoodmicro.2008.12.030] [PMID]
40. Nji Q.N., Babalola O.O., Mwanza M. (2022). Aflatoxins in maize: can their occurrence be effectively managed in Africa in the face of climate change and food insecurity?. Toxins. 14: 574. [DOI: 10.3390/toxins14080574] [DOI:10.3390/toxins14080574] [PMID] [PMCID]
41. Nwaubani S.I., Opit G.P., Otitodun G.O., Adesida M.A. (2014). Efficacy of two Nigeria-derived diatomaceous earths against Sitophilus oryzae (Coleoptera: Curculionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) on wheat. Journal of stored products research. 59: 9-16. [DOI: 10.1016/j.jspr. 2014.04.001] [DOI:10.1016/j.jspr.2014.04.001]
42. Nwosu L.C., Azeez O.M., Eluwa A.N., Petgrave G.M. (2020). Two stubborn storage insect pests, Callosobruchus maculatus and Sitophilus zeamais: biology, food security problems and control strategies. International Research Journal of Insect Sciences. 5: 7-13. [DOI: 10.18488/journal.106.2020.51.7.13] [DOI:10.18488/journal.106.2020.51.7.13]
43. Ogara I.M., Zarafi A.B., Alabi O., Banwo O., Ezekiel C.N., Warth B., Sulyok M., Krska R. (2017). Mycotoxin patterns in ear rot infected maize: a comprehensive case study in Nigeria. Food Control. 73: 1159-1168. [DOI: 10.1016/j.foodcont.2016.10. 034] [DOI:10.1016/j.foodcont.2016.10.034]
44. Ogungbemile O.A., Etaware P.M., Odebode A.C. (2020). Aflatoxin detection and quantification in stored cowpea seeds in Ibadan, Nigeria. Journal of Biotechnology and Biomedicine. 3: 10-17. [DOI: 10.26502/jbb.2642-91280022] [DOI:10.26502/jbb.2642-91280022]
45. Ok H.E., Kim D.M., Kim D., Chung S.H., Chung M.-S., Park K.H., Chun H.S. (2014). Mycobiota and natural occurrence of aflatoxin, deoxynivalenol, nivalenol and zearalenone in rice freshly harvested in South Korea. Food Control. 37: 284-291. [DOI: 10.1016/j.foodcont.2013.09.020] [DOI:10.1016/j.foodcont.2013.09.020]
46. Oni M.O. (2014). Entomotoxic efficacy of cayenne pepper, sweet pepper, and long cayenne pepper oil extracts against Sitophilus zeamais infesting maize grain. Molecular Entomology. 5: 37-44. [DOI: 10.5376/me.2014.05.0005] [DOI:10.5376/me.2014.05.0005]
47. Oyedele O.A., Ezekiel C.N., Sulyok M., Adetunji M.C., Warth B., Atanda O.O., Krska R. (2017). Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International Journal of Food Microbiology. 251: 24-32. [DOI: 10.1016/j.ijfoodmicro.2017.03.020] [DOI:10.1016/j.ijfoodmicro.2017.03.020] [PMID]
48. Oyeka C.A., Amasiani R.N., Ekwealor C.C. (2019). Mycotoxins contamination of maize in Anambra state, Nigeria. Food Additives and Contaminants: Part B. 12: 280-288. [DOI: 10.1080/19393210.2019.1661528] [DOI:10.1080/19393210.2019.1661528]
49. Partnership for Aflatoxin Control in Africa (PACA). (2013). Aflatoxin impacts and potential solutions in agriculture, trade, and health. A background paper for the PACA strategy development - stakeholder consultation workshop. pp: 1-11. URL: http://archives.au.int/handle/123456789/4985.
50. Pessu P.O., Peters O.A., Aina J.A., Akande S.A. (2020). Survey of aflatoxins contamination in selected agricultural commodities obtained from major markets in six geographical zones in Nigeria. Scientia Africana. 19: 1-14.
51. Pickova D., Ostry V., Toman J., Malir F. (2021). Aflatoxins: history, significant milestones, recent data on their toxicity and ways to mitigation. Toxins. 13: 399. [DOI: 10.3390/ toxins13060399]. [DOI:10.3390/toxins13060399] [PMID] [PMCID]
52. Prescott L.M., Harley J.P., Klein D.A. (2011). Microbiology. 8th edition. WMC Brown, London.
53. Rodrigues I., Handl J., Binder E.M. (2011) Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the middle East and Africa. Food Additives and Contaminants: Part B. 4: 168-179. [DOI: 10.1080/19393210.2011.589034] [DOI:10.1080/19393210.2011.589034] [PMID] [PMCID]
54. Rodrigues P., Soares C., Kozakiewicz Z., Paterson R.R.M., Lima N., Venâncio A. (2007). Identification and characterization of Aspergillus flavus and aflatoxins. In: Méndez-Villas A. (Editor). Communicating current research and educational topics and trends in applied microbiology. Formatex, Beirut, Lebanon. pp: 527-534.
55. Seenappa M., Keswani C.L., Kundya T.M. (1983). Aspergillus infection and aflatoxin production in some cowpea (Vigna unguiculata (L.) Walp.) lines in Tanzania. Mycopathologia. 83: 103-106. [DOI:10.1007/BF00436890] [PMID]
56. Shephard G.S. (2004). Mycotoxins worldwide: current issues in Africa. In: Barug D., Van Egmond H., Lopez-Garcia R., Van Ossenbruggen T., Visconti A. (Editors). Meeting the mycotoxin menace. Wageningen Academic Publishers, Wageningen, Netherlands. pp: 81-88.
57. Wang H., He A., Yang X. (2018). Dynamics of microflora on conveyor belts in a beef fabrication facility during sanitation. Food Control. 85: 42-47. [DOI: 10.1016/j.foodcont.2017. 09.017] [DOI:10.1016/j.foodcont.2017.09.017]
58. Wild C.P., Miller J.D., Groopman J.D. (2016). Mycotoxin control in low- and middle-income countries. International Agency for Research on Cancer (IARC), Lyon, France. URL: file:///C:/Users/admin/Downloads/IARC_publicationWGR9_full.pdf.
59. Wu F., Bhatnagar D., Bui-Klimke T., Carbone I., Hellmich R., Munkvold G., Paul P., Payne G., Takle E. (2011). Climate change impacts on mycotoxin risks in US maize. World Mycotoxin Journal. 4: 79-93. [DOI: 10.3920/WMJ2010.1246] [DOI:10.3920/WMJ2010.1246]
60. Yang J.D., Mohamed E.A., Aziz A.O.A., Shousha H.I., Hashem M.B., Nabeel M.M., Abdelmaksoud A.H., Elbaz T.M., Afihene M.Y., Duduyemi B.M., Ayawin J.P., Gyedu A., et al. (2017). Characteristics, management, and outcomes of patients with hepatocellular carcinoma in Africa: a multi-country observational study from the Africa liver cancer consortium. The Lancet Gastroenterology and Hepatology. 2: 103-111. [DOI: 10.1016/S2468-1253(16)30161-3] [DOI:10.1016/S2468-1253(16)30161-3] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb