Volume 9, Issue 3 (September 2022)                   J. Food Qual. Hazards Control 2022, 9(3): 169-178 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

El Issaoui K, Senhaji N, Wieme A, Abrini J, Khay E. Probiotic Properties and Physicochemical Potential of Lactic Acid Bacteria Isolated from Moroccan Table Olives. J. Food Qual. Hazards Control 2022; 9 (3) :169-178
URL: http://jfqhc.ssu.ac.ir/article-1-1011-en.html
Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco , issaoui.kaoutar@hotmail.fr
Abstract:   (776 Views)
Background: Lactic Acid Bacteria are a group of Gram-positive bacteria which are widely used in the food industry as organic ferments called starter cultures. In this study, Enterococcus faecium, Leuconostoc mesenteroides, Lactococcus lactis, Weissella paramesenteroides, and Lactiplantibacillus plantarum isolated from Moroccan table olives were tested for their acquisition of probiotic and technological properties.
Methods: The 5 strains were previously isolated from table olives in 2017. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer (MALDI-TOF MS) and intergenic space sequencing were used for molecular identification. Following that, probiotic and physicochemical properties were evaluated, including growth at different pH levels (2, 3, and 10), temperatures (7, 45, and
50 °C), and sodium chloride (NaCl) concentrations (6.5 and 18% m/v). Antibacterial activity was tested out against Gram-positive and Gram-negatives bacteria.
Results: The 5 strains (E. faecium 168, L. lactis 9, L. plantarum 11, L. mesenteroides 62, and W. paramesenteroides 36) showed an ability to grow at low temperatures (7 °C). L. lactis 9 and L. plantarum 11 showed higher acid (pH 2) and salt (18% NaCl) tolerances. In addition, L. lactis 9 and L. plantarum 11 exhibited the highest level of free radical scavenging activity after 48 h of incubation, respectively). L. plantarum 11 and E. faecium 168 showed the highest antibacterial capacity. However, E. faecium 168 and W. paramesenteroides 36 demonstrated better and more rapid acid production capabilities.
Conclusion: L. plantarum 11, E. faecium 168, and W. paramesenteroides 36 were considered the best candidates as probiotic cultures for further in vivo studies and functional food product development.

DOI: 10.18502/jfqhc.9.3.11155
Full-Text [PDF 555 kb]   (364 Downloads)    
Type of Study: Original article | Subject: Special
Received: 21/11/24 | Accepted: 22/05/08 | Published: 22/09/24

References
1. Adesulu-Dahunsi A.T., Jeyaram K., Sanni A.I. (2018). Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products. Food Control. 92: 225-231. [DOI: 10.1016/j.foodcont.2018.04.062] [DOI:10.1016/j.foodcont.2018.04.062]
2. Adeyemo S.M., Agun T.F., Ogunlusi E.D. (2018). Antimicrobial activity of lactic acid bacteria isolated from 'Pupuru': an African fermented staple against food borne-pathogens. Journal of Molecular Biology and Biotechnology. 3: 5.
3. Akbar A., Sadiq M.B., Ali I., Anwar M., Muhammad N., Muhammad J., Shafee M., Ullah S., Gul Z., Qasim S. (2019). Lactococcus lactis subsp. lactis isolated from fermented milk products and its antimicrobial potential. CyTA - Journal of Food. 17: 214-220. [DOI: 10.1080/19476337.2019.1575474] [DOI:10.1080/19476337.2019.1575474]
4. Anagnostopoulos D.A., Goulas V., Xenofontos E., Vouras C., Nikoloudakis N., Tsaltas D. (2020). Benefits of the use of lactic acid bacteria starter in green cracked cypriot table olives fermentation. Foods. 9: 17. [DOI: 10.3390/foods9010017] [DOI:10.3390/foods9010017] [PMID] [PMCID]
5. Argyri K., Doulgeraki A.I., Manthou E., Grounta A., Argyri A.A., Nychas G.-J.E., Tassou C.C. (2020). Microbial diversity of fermented greek table olives of halkidiki and konservolia varieties from different regions as revealed by metagenomic analysis. Microorganisms. 8: 1241. [DOI: 10. 3390/microorganisms8081241] [DOI:10.3390/microorganisms8081241]
6. Arqués J.L., Rodríguez E., Langa S., Landete J.M., Medina M. (2015). Antimicrobial activity of lactic acid bacteriain dairy products and gut: effect on pathogens. Biomed Research International. [DOI: 10.1155/2015/584183] [DOI:10.1155/2015/584183] [PMID] [PMCID]
7. Benítez-Cabello A., Calero-Delgado B., Rodríguez-Gómez F., Garrido-Fernández A., Jiménez-Díaz R., Arroyo-López F.N. (2019). Biodiversity and multifunctional features of lactic acid bacteria isolated from table olive biofilms. Frontiers in Microbiology. 10: 836. [DOI: 10.3389/fmicb.2019.00836] [DOI:10.3389/fmicb.2019.00836] [PMID] [PMCID]
8. Bodour A.A., Guerrero-Barajas C., Jiorle B.V., Malcomson M.E., Paull A.K., Somogyi A., Trinh L.N., Bates R.B., Maier R.M. (2004). Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Applied and Environmental Microbiology. 70: 114-120. [DOI: 10.1128/AEM.70.1.114-120.2004] [DOI:10.1128/AEM.70.1.114-120.2004] [PMID] [PMCID]
9. Delcarlo S.B., Parada R., Schelegueda L.I., Vallejo M., Marguet E.R., Campos C.A. (2019). From the isolation of bacteriocinogenic LAB strains to the application for fish paste biopreservation. LWT - Food Science and Technology. 110: 239-246. [DOI: 10.1016/j.lwt.2019.04.079] [DOI:10.1016/j.lwt.2019.04.079]
10. De Lourdes Pérez-Chabela M.. Totosaus A., Guerrero I. (2008). Evaluation of thermotolerant capacity of lactic acid bacteria isolated from commercial sausages and the effects of their addition on the quality of cooked sausages. Food Science and Technology. 28: 132-138. [DOI: 10.1590/S0101-20612008000100019] [DOI:10.1590/S0101-20612008000100019]
11. Deza M.A.C., Martos G.I., Nuñez M., Fiori M., Gerez C.L., Font G. (2018). Artisanal tanneries: potential application of inoculants formulated with lactic acid bacteria. Journal of Basic Microbiology. 58: 296-301. [DOI: 10.1002/jobm.201700547] [DOI:10.1002/jobm.201700547] [PMID]
12. Ding W., Wang L., Zhang J., Ke W., Zhou J., Zhu J., Guo X., Long R. (2017). Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan plateau. Journal of Functional Foods. 35: 481-488. [DOI: 10.1016/j.jff.2017.06.008] [DOI:10.1016/j.jff.2017.06.008]
13. Djerbaoui A.N. (2011). The use of aboriginal bacterial strains in the production of biosurfactant and the bioremediation of hassi messaoud soils contaminated by hydrocarbons. Université Kasdi Merbah de Ouargla. URL: https://dspace.univ-ouargla.dz/jspui/bitstream/123456789/471/1/DJERBAOUI_ Amina_Nesrine.pdf. [Algerian with English abstract].
14. El Issaoui K., Khay E.O., Abrini J., Zinebi S., Amajoud N., Senhaji N.S., Abriouel H. (2020). Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Archives of Microbiology. 203: 597-607. [DOI: 10.1007/s00203-020-02053-0] [DOI:10.1007/s00203-020-02053-0] [PMID]
15. El Issaoui K., Zinebi S., Abrini J., Zahli R., Amajoud N., Senhaji N.S., Khay E.O. (2017). Characterization of antibacterial lactic acid bacteria isolated from Moroccan fermented olives. Biosciences Biotechnology Research Asia. 14: 1315-1329. [DOI: 10.13005/bbra/2575] [DOI:10.13005/bbra/2575]
16. FAO/WHO. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation, Cordoba, Argentina, 1-4 October 2001. URL: https://www.iqb.es/ digestivo/pdfs/probioticos.pdf.
17. Fguiri I., Ziadi M., Atigui M., Ayeb N., Arroum S., Assadi M., Khorchani T. (2016). Isolation and characterisation of lactic acid bacteria strains from raw camel milk for potential use in the production of fermented Tunisian dairy products. International Journal of Dairy Technology. 69: 103-113. [DOI: 10.1111/1471-0307.12226] [DOI:10.1111/1471-0307.12226]
18. Gad G.F.M., Abdel-Hamid A.M., Farag Z.S.H. (2014). Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. Brazilian Journal of Microbiology. 45: 25-33. [DOI: 10.1590/S1517-83822014000100005] [DOI:10.1590/S1517-83822014000100005] [PMID] [PMCID]
19. Georgieva R., Iliev I., Haertlé T., Chobert J.-M., Ivanova I., Danova S. (2009). Technological properties of candidate probiotic Lactobacillus plantarum strains. International Dairy Journal. 19: 696-702. [DOI: 10.1016/j.idairyj.2009.06.006] [DOI:10.1016/j.idairyj.2009.06.006]
20. Hassaîne O., Zadi-Karam H., Karam N.E. (2007). Technologically important properties of lactic acid bacteria isolated from raw milk of three breeds of Algerian dromedary (Camelus dromedarius). African Journal of Biotechnology. 6: 1720-1727.
21. Hentati D. (2018). Isolation and characterization of marine hydrocarbonoclast bacteria, production of biosurfactants and study of microbial biodiversity in three ports of Sfax, Tunisia. Microbiologie et Parasitologie. Université Montpellier; Université de Sfax (Tunisie). URL: https://tel.archives-ouvertes.fr/tel-02045890/document. [Tunisian with English abstract].
22. Kaur S., Amrita., Kaur P., Nagpal R. (2015). In vitro biosurfactant production and biofilm inhibition by lacctic acid bacteria isolated from fermented food products. International Journal of Probiotics and Prebiotics. 10: 17-22.
23. Khay E.O., Idaomar M., Castro L.M.P., Bernárdez P.F., Senhaji N.S., Abrini J. (2011). Antimicrobial activities of the bacteriocin-like substances produced by lactic acid bacteria isolated from Moroccan dromedary milk. African Journal of Biotechnology. 10: 10447-10455. [DOI: 10.5897/AJB11.1328] [DOI:10.5897/AJB11.1328]
24. Kivanç S.A., Kivanç M., Yiğit T. (2016). Antibiotic susceptibility, antibacterial activity and characterisation of Enterococcus faecium strains isolated from breast milk. Experimental and Therapeutic Medicine. 12: 1732-1740. [DOI: 10.3892/etm. 2016.3545] [DOI:10.3892/etm]
25. Lee S., Kim M. (2019). Leuconostoc mesenteroides MKSR isolated from kimchi possesses α-glucosidase inhibitory activity, antioxidant activity, and cholesterol-lowering effects. LWT- Food Science and Technology. 116: 108570. [DOI: 10.1016/ j.lwt.2019.108570] [DOI:10.1016/j.lwt.2019.108570]
26. Maldonado N.C., Chiaraviglio J., Bru E., De Chazal L., Santos V., Nader-Macías M.E.F. (2018). Effect of milk fermented with lactic acid bacteria on diarrheal incidence, growth performance and microbiological and blood profiles of newborn dairy calves. Probiotics and Antimicrobial Proteins. 10: 668-676. [DOI: 10.1007/s12602-017-9308-4] [DOI:10.1007/s12602-017-9308-4] [PMID]
27. Malek R., El-Attar A., Mohamed M., Anwar S., El-Soda M., Béal C. (2012). Technological and safety properties display biodiversity among enterococci isolated from two Egyptian cheeses, "Ras" and "Domiati". International Journal of Food Microbiology. 153: 314-322. [DOI: 10.1016/j.ijfoodmicro. 2011.11.019] [DOI:10.1016/j.ijfoodmicro.2011.11.019] [PMID]
28. Mohammed M., El-Aziz H.A., Omran N., Anwar S., Awad S., El-Soda M. (2009). Rep-PCR characterization and biochemical selection of lactic acid bacteria isolated from the Delta area of Egypt. International Journal of Food Microbiology. 128: 417-423. [DOI: 10.1016/j.ijfoodmicro.2008.09.022] [DOI:10.1016/j.ijfoodmicro.2008.09.022] [PMID]
29. Muñoz M.D.C.C., Benomar N., Lerma L.L., Gálvez A., Abriouel H. (2014). Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. International Journal of Food microbiology. 172: 110-118. [DOI: 10.1016/j.ijfoodmicro.2013.11.025] [DOI:10.1016/j.ijfoodmicro.2013.11.025] [PMID]
30. Perin L.M., Belviso S., Dal Bello B., Nero L.A., Cocolin L. (2017). Technological properties and biogenic amines production by bacteriocinogenic lactococci and enterococci strains isolated from raw goat's milk. Journal of Food Protection. 80: 151-157. [DOI: 10.4315/0362-028X.JFP-16-267] [DOI:10.4315/0362-028X.JFP-16-267] [PMID]
31. Qian Z., Zhao D., Yin Y., Zhu H., Chen D. (2020). Antibacterial activity of Lactobacillus strains isolated from Mongolian yogurt against Gardnerella vaginalis. BioMed Research International. 2020. [DOI: 10.1155/2020/3548618] [DOI:10.1155/2020/3548618] [PMID] [PMCID]
32. Sari M., Kusharyoto W., Artika I.M. (2014). Screening for biosurfactant-producing yeast: confirmation of biosurfactant production. Biotechnology. 13: 106-111. [DOI:10.3923/ biotech.2014.106.111] [DOI:10.3923/biotech.2014.106.111]
33. Sari M., Suryanto D., Yurnaliza. (2018). Antimicrobial activity of lactic acid bacteria isolated from bekasam against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella sp. IOP Conference Series: Earth and Environmental Science. 130: 012011. [DOI: 10.1088/1755-1315/130/1/012011] [DOI:10.1088/1755-1315/130/1/012011]
34. Sieladie D.V., Zambou N.F., Kaktcham P.M., Cresci A., Fonteh F. (2011). Probiotics properties of lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innovative Romanian Food Biotechnology. 9: 12-28.
35. Silva L.F., Sunakozawa T.N., Amaral D.M.F., Casella T., Nogueira M.C.L., Lindner J.D.D., Bottari B., Gatti M., Penna A.L.B. (2020). Safety and technological application of autochtonous Streptococcus thermophilus cultures in the buffalo Mozzarella cheese. Food Microbiology. 87: 103393. [DOI: 10.1016/j.fm. 2019.103383] [DOI:10.1016/j.fm.2019.103383] [PMID]
36. Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. (2015). MALDI-TOF mass spectroometry: an emerging technology for microbial identification and diagnosis. Frontiers in microbiology. 6: 791. [DOI: 10.3389/fmicb.2015.00791] [DOI:10.3389/fmicb.2015.00791]
37. Son S., Lewis B.A. (2002). Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure−activity relationship. Journal of Agricultural and Food chemistry. 50: 468-472. [DOI: 10.1021/jf010830b] [DOI:10.1021/jf010830b] [PMID]
38. Stanojević-Nikolić S., Dimić G., Mojović L., Pejin J., Djukić-Vuković A., Kocić-Tanackov S. (2016). Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. Journal of Food Processing and Preservation. 40: 990-998. [DOI: 10.1111/jfpp.12679] [DOI:10.1111/jfpp.12679]
39. Strejcek M., Smrhova T., Junkova P., Uhlik O. (2018). Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Frontiers in Microbiology. 9: 1294. [DOI: 10.3389/fmicb. 2018.01294] [DOI:10.3389/fmicb.2018.01294] [PMID] [PMCID]
40. Uugantsetseg E., Batjargal B. (2014). Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag. Mongolian Journal of Chemistry. 15: 73-78. [DOI: 10.5564/ mjc.v15i0.327] [DOI:10.5564/mjc.v15i0.327]
41. Vallejo C.M., Restrepo M.A.F., Duque F.L.G., Díaz J.C.Q. (2021). Production, characterization and kinetic model of biosurfactant produced by lactic acid bacteria. Electronic Journal of Biotechnology. 53: 14-22. [DOI: 10.1016/j.ejbt.2021.06.001] [DOI:10.1016/j.ejbt.2021.06.001]
42. Virtanen T., Pihlanto A., Akkanen S., Korhonen H. (2007). Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology. 102: 106-115. [DOI: 10.1111/j.1365-2672.2006.03072.x] [DOI:10.1111/j.1365-2672.2006.03072.x] [PMID]
43. Wan L.Y.M., Chen Z.J., Shah N.P., El-Nezami H. (2016). Modulation of intestinal epithelial defense responses by probiotic bacteria. Critical Reviews in Food Science and Nutrition. 56: 2628-2641. [DOI: 10.1080/10408398.2014.905450] [DOI:10.1080/10408398.2014.905450] [PMID]
44. Wieme A., Cleenwerck I., Van Landschoot A., Vandamme P. (2012). Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici. International Journal of Systematic and Evolutionary Microbiology. 62: 3105-3108. [DOI: 10.1099/ijs.0.046201-0] [DOI:10.1099/ijs.0.046201-0] [PMID]
45. Zhang Y., Hu P., Lou L., Zhan J., Fan M., Li D., Liao Q. (2017). Antioxidant activities of lactic acid bacteria for quality improvement of fermented sausage. Journal of Food Science. 82: 2960-2967. [DOI: 10.1111/1750-3841.13975] [DOI:10.1111/1750-3841.13975] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb