Volume 10, Issue 1 (March 2023)                   J. Food Qual. Hazards Control 2023, 10(1): 55-59 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fernandes L, Nascimento J. Chlorhexidine Gluconate Tolerance by Acinetobacter spp. Isolated from Foods Originated from Brazil. J. Food Qual. Hazards Control 2023; 10 (1) :55-59
URL: http://jfqhc.ssu.ac.ir/article-1-1015-en.html
Laboratório de Microbiologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, 20,270-021, Brasil , janaina.nascimento@ifrj.edu.br
Abstract:   (556 Views)
Background: In recent years, Acinetobacter spp. have emerged as opportunistic food-borne pathogens worldwide. The purpose of this study was to evaluate the tolerance to chlorhexidine by Acinetobacter spp. isolated from foods that are handled and consumed without any prior heat treatment.
Methods: Eleven Acinetobacter spp. isolates from ready-to-eat salads and four from raw goat milk were previously collected. The samples were evaluated for tolerance to Chlorhexidine Gluconate (CG) based on the Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC). The evaluation was performed using the dilution method in titration microplates. Statistical analysis by GraphPad software was performed using the t-test to compare the values.
Results: The MIC and MBC of CG varied according to the origin of the isolates. Goat milk Acinetobacter spp. isolates were inhibited at MIC and MBC of
£7.8 ppm CG. For most Acinetobacter spp. isolated from salads, however, MIC and MBC values ranged between 31.2-62.5 ppm, which are values generally correlated with clinical isolates. An MIC of 250 ppm was verified for only one isolate (F2R21).
Conclusion: Even food isolates can present MIC and MBC values for CG comparable to those of multidrug resistant isolates from clinical origin, suggesting that this sanitizer should be used sparingly for food handlers.

DOI: 10.18502/jfqhc.10.1.11990
Full-Text [PDF 480 kb]   (274 Downloads)    
Type of Study: Short communication | Subject: Special
Received: 22/05/30 | Accepted: 22/11/22 | Published: 23/03/15

References
1. Beltrão J.C.D.C. (2019). Evaluation of the microbiological quality of ready-to-eat raw vegetable salads and identification of the antibiotic resistance profile of isolated enterobacteria. Master's dissertation. Fluminense Federal University. Niterói, Brazil. URL: https://app.uff.br/riuff/handle/1/12702. [Portuguese with English abstract]
2. Carvalheira A., Ferreira V., Silva J., Teixeira P. (2016). Enrichment of Acinetobacter spp. from food samples. Food Microbiology. 55: 123-127. [DOI: 10.1016/j.fm.2015.11.002] [DOI:10.1016/j.fm.2015.11.002] [PMID]
3. Carvalheira A., Silva J., Teixeira P. (2017). Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiology. 64: 119-125. [DOI: 10.1016/j.fm.2016.12.005] [DOI:10.1016/j.fm.2016.12.005] [PMID]
4. Cheng V.C.C., Wong S.C.Y., Ho P.-L., Yuen K.-Y. (2015). Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China. Emerging Microbes and Infections. 4: 1-13. [DOI: 10.1038/emi.2015.8] [DOI:10.1038/emi.2015.8] [PMID] [PMCID]
5. Elbehiry A., Marzouk E., Moussa I.M., Dawoud T.M., Mubarak A.S., Al-Sarar D., Alsubki R.A., Alhaji J.H., Hamada M., Abalkhail A., Hemeg H.A., Zahran R.N. (2021). Acinetobacter baumannii as a community foodborne pathogen: peptide mass fingerprinting analysis, genotypic of biofilm formation and phenotypic pattern of antimicrobial resistance. Saudi Journal of Biological Sciences. 28: 1158-1166. [DOI: 10.1016/j.sjbs. 2020.11.052] [DOI:10.1016/j.sjbs.2020.11.052] [PMID] [PMCID]
6. Fernández-Cuenca F., Tomás M., Caballero-Moyano F.-J., Bou G., Martínez-Martínez L., Vila J., Pachón J., Cisneros J.-M., Rodríguez-Baño J., Pascual A. (2015). Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. Journal of Antimicrobial Chemotherapy. 70: 3222-3229. [DOI: 10.1093/jac/dkv262] [DOI:10.1093/jac/dkv262] [PMID]
7. Food and Drug Administration (FDA). (2020). Over-the-counter (OTC) food handler antiseptic drug products regulatory considerations. URL: https://www.fda.gov/media/135559/ download. pdf. Accessed 11 March 2020.
8. Gadea R., Glibota N., Pérez-Pulido R., Gálvez A., Ortega E. (2017). Adaptation to biocides cetrimide and chlorhexidine in bacteria from organic foods: association with tolerance to other antimicrobials and physical stresses. Journal of Agricultural and Food Chemistry. 65: 1758-1770. [DOI: 10.1021/acs.jafc. 6b04650] [DOI:10.1021/acs.jafc.6b04650] [PMID]
9. Haubert L., Maia D.S.V., Rauber Würfel S.D.F., Vaniel C., Da Silva W.P. (2022). Virulence genes and sanitizers resistance in Salmonella isolates from eggs in southern Brazil. Journal of Food Science and Technology. 59: 1097-1103. [DOI: 10.1007/ s13197-021-05113-5] [DOI:10.1007/s13197-021-05113-5] [PMID] [PMCID]
10. Horner C., Mawer D., Wilcox M. (2012). Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter?. Journal of Antimicrobial Chemotherapy. 67: 2547-2559. [DOI: 10.1093/jac/dks284] [DOI:10.1093/jac/dks284] [PMID]
11. Kampf G. (2016). Acquired resistance to chlorhexidine - is it time to establish an 'antiseptic stewardship' initiative?. Journal of Hospital Infection. 94: 213-227. [DOI: 10.1016/j.jhin.2016.08. 018] [DOI:10.1016/j.jhin.2016.08.018] [PMID]
12. Kawamura-Sato K., Wachino J.-I., Kondo T., Ito H., Arakawa Y. (2010). Correlation between reduced susceptibility to disinfectants and multidrug resistance among clinical isolates of Acinetobacter species. Journal of Antimicrobial Chemotherapy. 65: 1975-1983. [DOI: 10.1093/jac/dkq227] [DOI:10.1093/jac/dkq227] [PMID]
13. Leshem T., Gilron S., Azrad M., Peretz A. (2022). Characterization of reduced susceptibility to chlorhexidine among Gram-negative bacteria. Microbes and Infection. 24: 104891. [DOI: 10.1016/j.micinf.2021.104891] [DOI:10.1016/j.micinf.2021.104891] [PMID]
14. Malta R.C.R., Ramos G.L.D.P.A., Nascimento J.D.S. (2020). From food to hospital: we need to talk about Acinetobacter spp. Germs. 10: 210-217. [DOI: 10.18683/germs.2020.1207] [DOI:10.18683/germs.2020.1207] [PMID] [PMCID]
15. Margas E., Holah J.T. (2014). Personal hygiene in the food industry. In: Lelieveld H.L.M., Holah J.T., Napper D. (Editors). Hygiene in food processing. Woodhead Publishing, Cambridge. pp. 408-440. [DOI: 10.1533/9780857098634.3. 408] [DOI:10.1533/9780857098634.3.408]
16. Morrissey I., Oggioni M.R., Knight D., Curiao T., Coque T., Kalkanci A., Martinez J.L. (2014). Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. Plos One. 9: e86669. [DOI: 10.1371/ journal.pone.0086669] [DOI:10.1371/journal.pone.0086669]
17. Obe T., Nannapaneni R., Schilling W., Zhang L., Kiess A. (2021). Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. Journal of Applied Poultry Research. 30: 100195. [DOI: 10.1016/j.japr.2021.100195] [DOI:10.1016/j.japr.2021.100195]
18. Oniciuc E.-A., Likotrafiti E., Alvarez-Molina A., Prieto M., López M., Alvarez-Ordóñez A. (2019). Food processing as a risk factor for antimicrobial resistance spread along the food chain. Current Opinion in Food Science. 30: 21-26. [DOI: 10.1016/j.cofs.2018.09.002] [DOI:10.1016/j.cofs.2018.09.002]
19. Ramos G.L.D.P.A., Nascimento J.D.S. (2019). Characterization of Acinetobacter spp. from raw goat milk. Ciência Rural. 49: e20190404. [DOI: 10.1590/0103-8478cr20190404] [DOI:10.1590/0103-8478cr20190404]
20. Todd E.C.D., Greig J.D., Michaels B.S., Bartleson C.A., Smith D., Holah J. (2010). Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 11. Use of antiseptics and sanitizers in community settings and issues of hand hygiene compliance in health care and food industries. Journal of Food Protection. 73: 2306-2320. [DOI: 10.4315/ 0362-028X-73.12.2306] [DOI:10.4315/0362-028X-73.12.2306] [PMID]
21. Wand M.E., Bock L.J., Bonney L.C., Sutton J.M. (2017). Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrobial Agents and Chemotherapy. 61: e01162-16. [DOI: 10.1128/ AAC.01162-16] [DOI:10.1128/AAC.01162-16] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb