Volume 10, Issue 4 (December 2023)                   J. Food Qual. Hazards Control 2023, 10(4): 221-225 | Back to browse issues page

Ethics code: IR.TUMS.VCR.REC.1397.863


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabi Z, Monadi Sefidan A, Zarebavani M, Sharifi Yazdi S, Sharifi Yazdi S, Torabi Bonab P, et al . Investigation of Enterotoxin-Producing Genes (sea, seb, sec, and sed) in Staphylococcus aureus Isolated from Raw Traditionally and Pasteurized Milk Supplied in Tehran, Iran. J. Food Qual. Hazards Control 2023; 10 (4) :221-225
URL: http://jfqhc.ssu.ac.ir/article-1-1026-en.html
Food Microbiology Research Center, Tehran University of Medical Sciences, Iran, Devision of Food Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Iran , msoltandallal@gmail.com
Abstract:   (137 Views)
Background: The issue of milk quality appears to be vital due to its nutritional value and since raw milk can be regarded as an appropriate environment for the growth of several pathogens by producing an enterotoxin. The aim of present study is to investigate enterotoxin-producing genes (sea, seb, sec, and sed) from Staphylococcus aureus isolated from raw traditional and pasteurized milk in Tehran, Iran.
Methods: One hundred and fifty samples of raw traditional milk supplied in five districts of Tehran were collected and simultaneously15 pasteurized milk samples from various brands were prepared and examined phenotypically and bio-chemically for the existence of S. aureus. The presence of sea, seb, sec, sed genes was assessed by Polymerase Chain Reaction and ultimately the antibiotic residue was measured with a commercial kit.
Results: In this study, 32 (21.3%) samples of raw traditional milk and one sample (6.7%) of pasteurized milk samples were infected with S. aureus. The frequency of presence of sea, seb, sec, and sed genes regarded to be: 9 (28.12%), 14 (43.75%), 6 (18.75%), 2 (6.25%), respectively however sec gene failed to identify. Basically 38 (33.25%) of raw traditional milk samples as well as 5 (33.33%) of pasteurized milk included antibiotic residue.
Conclusion: The high prevalence of S. aureus comprising enterotoxin genes in raw traditional milk is considered as a severe warning to the community and highlights the need for a high quality product.

DOI: 10.18502/jfqhc.10.4.14180
Full-Text [PDF 277 kb]   (93 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/11/28 | Accepted: 23/10/18 | Published: 23/12/30

References
1. Balaban N., Rasooly A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology. 61: 1-10. [DOI: 10.1016/S0168-1605(00)00377-9] [DOI:10.1016/S0168-1605(00)00377-9] [PMID]
2. Bardosh K. (2016). One health. Science, politics and zoonotic disease in Africa. 1st edition. Routledge, Milton Park, Abingdon. [DOI:10.4324/9781315659749]
3. Bendahou A., Abid M., Bouteldoun N., Catelejine D., Lebbadi M. (2009). Enterotoxigenic coagulase positive Staphylococcus in milk and milk products, lben and jben, in northern Morocco. Journal of Infection in Developing Countries. 3: 169-176. [DOI: 10.3855/jidc.32] [DOI:10.3855/jidc.32]
4. Bertolatti D., Theobald C. (2011). Food safety and risk analysis. Encyclopedia of Environmental Health. 792-802. [DOI: 10.1016/B978-0-444-52272-6.00620-6] [DOI:10.1016/B978-0-444-52272-6.00620-6]
5. Haghi F., Daneshamooz S., Parsadanians A., Zeighami H. (2019). The frequency of Staphylococcus aureus classical enterotoxin genes in raw milk samples in Zanjan, Iran. Journal of Human, Environment, and Health Promotion. 5: 32-35. [DOI: 10.29252/jhehp.5.1.6] [DOI:10.29252/jhehp.5.1.6]
6. Hwang S.Y., Kim S.H., Jang E.J., Kwon N.H., Park Y.K., Koo H.C., Jung W.K., Kim J.M., Park Y.H. (2007). Novel multiplex PCR for the detection of the Staphylococcus aureus superantigen and its application to raw meat isolates in Korea. International Journal of Food Microbiology. 117: 99-105. [DOI: 10.1016/j.ijfoodmicro.2007.02.013] [DOI:10.1016/j.ijfoodmicro.2007.02.013] [PMID]
7. Kapoor S., Goel A.D., Jain V. (2023). Milk-borne diseases through the lens of one health. Frontiers in Microbiology. 14: 1041051. [DOI: 10.3389/fmicb.2023.1041051] [DOI:10.3389/fmicb.2023.1041051] [PMID] [PMCID]
8. Khoothiam K., Prapasawat W., Yosboonruang A., Rawangkan A., Phuangsri C., Rupprom K., Kraivuttinun P., Tanomsridachchai W., Suthienkul O., Siriphap A. (2023). Prevalence, antimicrobial resistance, and enterotoxin gene profiles of Staphylococcus aureus isolated from mobile phones of the food vendors in Phayao province, Thailand. Annals of Clinical Microbiology and Antimicrobials. 22: 68. [DOI: 10.1186/s12941-023-00621-y] [DOI:10.1186/s12941-023-00621-y] [PMID] [PMCID]
9. Kou X., Cai H., Huang S., Ni Y., Luo B., Qian H., Ji H., Wang X. (2021). Prevalence and characteristics of Staphylococcus aureus isolated from retail raw milk in northern Xinjiang, China. Frontiers in Microbiology. 12: 705947. [DOI: 10.3389/fmicb. 2021.705947] [DOI:10.3389/fmicb.2021.705947] [PMID] [PMCID]
10. Ler S.G., Lee F.K., Gopalakrishnakone P. (2006). Trends in detection of warfare agents: detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. Journal of Chromatography A. 1133: 1-12. [ DOI: 10.1016/j.chroma.2006.08.078] [DOI:10.1016/j.chroma.2006.08.078] [PMID]
11. Mashouf R.Y., Hosseini S.M., Mousavi S.M., Arabestani M.R. (2015). Prevalence of enterotoxin genes and antibacterial susceptibility pattern of Staphylococcus aureus strains isolated from animal originated foods in West of Iran. Oman Medical Journal. 30: 283-290. [DOI: 10.5001/omj.2015.56] [DOI:10.5001/omj.2015.56] [PMID] [PMCID]
12. Moradi Farsani A., Shakerian A., Rahimi E., Momtaz H. (2018). Detection of enterotoxin-encoding genes in Staphylococcus aureus isolated from raw milk buffalo in Khuzestan province. Journal of Food Hygiene. 8: 29-36. [Persian with English abstract]
13. Morandi S., Brasca M., Lodi R., Cremonesi P., Castiglioni B. (2007). Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products. Veterinary Microbiology. 124: 66-72. [ DOI: 10.1016/j.vetmic.2007.03.014] [DOI:10.1016/j.vetmic.2007.03.014] [PMID]
14. Oliveira R., Pinho E., Almeida G., Azevedo N.F. Almeida C. (2022). Prevalence and diversity of Staphylococcus aureus and staphylococcal enterotoxins in raw milk from northern Portugal. Frontiers in Microbiology. 13: 846653. [DOI: 10.3389/fmicb. 2022.846653] [DOI:10.3389/fmicb.2022.846653] [PMID] [PMCID]
15. Peles F., Wagner M., Varga L., Hein I., Rieck P., Gutser K., Keresztúri P., Kardos G., Turcsányi I., Béri B., Szabó A. (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology. 118: 186-193. [DOI: 10.1016/j.ijfoodmicro. 2007.07.010] [DOI:10.1016/j.ijfoodmicro.2007.07.010] [PMID]
16. Pinchuk I.V., Beswick E.J., Reyes V.E. (2010). Staphylococcal enterotoxins. Toxins. 2: 2177-2197. [DOI: 10.3390/ toxins2082177] [DOI:10.3390/toxins2082177] [PMID] [PMCID]
17. Rahimkhani M., Rajabi Z. (2022). Investigating the antibiotic resistance pattern of MRSA isolates from blood and wound samples of patients admitted in a number of Tehran university of medical sciences hospitals: a brief report. Tehran University Medical Journal. 80: 590-596. [Persian with English abstract]
18. Riva A., Borghi E., Cirasola D., Colmegna S., Borgo F., Amato E., Pontello M.M., Morace G. (2015). Methicillin-resistant Staphylococcus aureus in raw milk: prevalence, SCCmec typing, enterotoxin characterization, and antimicrobial resistance patterns. Journal of Food Protection. 78: 1142-1146. [DOI: 10.4315/0362-028X.JFP-14-531] [DOI:10.4315/0362-028X.JFP-14-531] [PMID]
19. Sabour S., Azimi T., Nasser A., Hadi N., Mohsenzadeh A., Shariati A. (2022). A global overview of the most important zoonotic bacteria pathogens transmitted from Rattus norvegicus to humans in urban environments. Infectious Medicine. 1: 192-207. [DOI: 10.1016/j.imj.2022.07.002] [DOI:10.1016/j.imj.2022.07.002] [PMID] [PMCID]
20. Soltan Dallal M.M., Mazaheri Nezhad Fard R., Sharifi-Yazdi M.K. (2018). Prevalence of sea, seb, tsst, and mecA genes in Staphylococcus aureus isolated from shrimps sold in seafood retailers in Tehran, Iran. Journal of Food Quality and Hazards Control. 5: 72-76. [DOI: 10.29252/jfqhc.5.2.7] [DOI:10.29252/jfqhc.5.2.7]
21. Soltan-Dallal M.M., Salehipour Z., Mehrabadi J.F. (2010). Molecular epidemiology of Staphylococcus aureus in food samples based on the protein A gene polymorphic region DNA sequence. Canadian Journal of Microbiology. 56: 18-21. [ DOI: 10.1139/W09-111] [DOI:10.1139/W09-111] [PMID]
22. Tirado M.C., Clarke R., Jaykus L.A., McQuatters-Gollop A., Frank J.M. (2010). Climate change and food safety: a review. Food Research International. 43: 1745-1765. [DOI: 10.1016/ j.foodres.2010.07.003] [DOI:10.1016/j.foodres.2010.07.003]
23. Verma A.K., Dhama K., Chakraborty S., Kumar A., Tiwari R., Rahal A., Mahima., Singh S.V. (2014). Strategies for combating and eradicating important infectious diseases of animals with particular reference to India: present and future perspectives. Asian Journal of Animal and Veterinary Advances. 9: 77-106. [ DOI: 10.3923/ajava.2014.77.106] [DOI:10.3923/ajava.2014.77.106]
24. Zhao X., Yuan X., Hu M., Zhang Y., Li L., Zhang Q., Yuan X., Wang W. (2021). Prevalence and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from bulk tank milk in Shandong dairy farms. Food Control. 125: 107836. [DOI: 10.1016/j.foodcont.2020.107836] [DOI:10.1016/j.foodcont.2020.107836]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb