Volume 9, Issue 4 (December 2022)                   J. Food Qual. Hazards Control 2022, 9(4): 199-214 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shehata M, Badr A, Abd El-Aziz N, Abd-Rabou H, El-Sohaimy S. Optimization, Partial Purification, and Characterization of Bioactive Peptides of Lactobacillus paracasei Isolated from Traditional Egyptian Cheese. J. Food Qual. Hazards Control 2022; 9 (4) :199-214
URL: http://jfqhc.ssu.ac.ir/article-1-1027-en.html
Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21,934, Egypt, Department of Technology and Organization of Public Catering, Institute of Sport, Tourism and Service, South Ural State University, Chelyabinsk, Russia , elsohaimys@gmail.com
Abstract:   (367 Views)
Background: Bacteriocins are small peptides which are ribosomally synthesized and have been shown to have wide range of antimicrobial activity. The aim of this study was to optimize the production of L. paracasei MG847589 bacteriocin. Furthermore, the potential antibacterial properties of the novel bacteriocins were characterized and evaluated against Staphylococcus aureus.
Methods: The present study optimized the growth media constituents of Lactobacillus paracasei MG847589 to improve bacteriocin yield by applying One-Factor-at-a-Time (OFAT) and Response Surface Methodology (RSM) methods.
Results: At OFAT, two-fold activity increased against Staphylococcus aureus in the presence of whey (22.5 g/L) as nitrogen source and sucrose (30 g/L) as carbon source. RSM tool was performed with media compounds using design expert Whey (22.5 g/L), sucrose (30 g/L), temperature (30 ºC), and pH (6.5) condition yielded 25,600 AU/ml of bacteriocin against S. aureus. Bacteriocin was stable at pH range of 2.0 to 8.0 for one h and at 60 ºC for 15 min. The produced antimicrobial peptide is a novel bacteriocin with molecular mass of 2,611.122 Da.
Conclusion: Bacteriocin of L. paracasei MG847589 isolated from traditional Egyptian cheese (Kareish) showed great antimicrobial activity and could be applied as food preservative in food manufacturing.

DOI: 10.18502/jfqhc.9.4.11375
Full-Text [PDF 1511 kb]   (201 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/03/14 | Accepted: 22/10/23 | Published: 22/12/29

1. Altuntaş E.G., Ayhan K., Peker S., Ayhan B., Demiralp D.Ö. (2014). Purification and mass spectrometry based characterization of a pediocin produced by Pediococcus acidilactici 13. Molecular Biology Reports. 41: 6879-6885. [DOI: 10.1007/ s11033-014-3573-z] [DOI:10.1007/s11033-014-3573-z]
2. Barefoot S.F., Klaenhammer T.R. (1983). Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Applied and Environmental Microbiology. 45: 1808-1815. [DOI: 10.1128/aem.45.6.1808-1815.1983] [DOI:10.1128/aem.45.6.1808-1815.1983] [PMID] [PMCID]
3. Benjamín C., Luis P., Fernando C.-L. (2022). Modeling the effects of pH variation and bacteriocin synthesis on bacterial growth. Applied Mathematical Modelling. 110: 285-297. [DOI: 10. 1016/j.apm.2022.05.014] [DOI:10.1016/j.apm.2022.05.014]
4. Bennett S., Ben Said L., Lacasse P., Malouin F., Fliss I. (2021). Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis. Antibiotics. 10: 1418. [DOI: 10.3390/ antibiot-ics10111418] [DOI:10.3390/antibiotics10111418] [PMID] [PMCID]
5. Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76: 965-977. [DOI: 10.1016/j.talanta.2008.05.019] [DOI:10.1016/j.talanta.2008.05.019] [PMID]
6. Bhattacharya S., Das A. (2010) Study of physical and cultural parameters on the bacteriocins produced by lactic acid bacteria isolated from traditional Indian fermented food. American Journal of Food Technology. 5: 111-120. [DOI: 10.3923/ ajft.2010.111.120] [DOI:10.3923/ajft.2010.111.120]
7. Bintsis T. (2017). Foodborne pathogens. AIMS Microbiology. 3: 529-563. [DOI: 10.3934/microbiol.2017.3.529] [DOI:10.3934/microbiol.2017.3.529] [PMID] [PMCID]
8. Biswas S.R., Ray P., Johnson M.C., Ray B. (1991). Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Applied and Environmental Microbiology. 57: 1265-1267. [DOI: 10.1128/ aem.57.4.1265-1267.1991] [DOI:10.1128/aem.57.4.1265-1267.1991] [PMID] [PMCID]
9. Borah T., Gogoi B., Khataniar A., Gogoi M., Das A., Borah D. (2019). Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. Biocatalysis and Agricultural Biotechnology. 18: 101008. [DOI: 10.1016/j.bcab.2019.01. 046] [DOI:10.1016/j.bcab.2019.01.046]
10. Campelo A.B., Roces C., Mohedano M.L., López P., Rodríguez A., Martínez B. (2014). A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microbial Cell Factories. 13: 77. [DOI: 10.1186/1475-2859-13-77] [DOI:10.1186/1475-2859-13-77] [PMID] [PMCID]
11. Chumchalova ́ J., Stiles J., Josephsen J., Plocková M. (2004). Characterization and purification of acidocin CH5, a bacteriocin produced by Lactobacillus acidophilus CH5. Journal of Applied Microbiology. 96: 1082-1089. [DOI: 10.1111/j.1365-2672.2004.02237.x] [DOI:10.1111/j.1365-2672.2004.02237.x] [PMID]
12. Cladera-Olivera F., Caron G.R., Brandelli A. (2004). Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal. 21: 53-58. [DOI: 10.1016/j.bej.2004. 05.002] [DOI:10.1016/j.bej.2004.05.002]
13. Daba G.M., Elkhateeb W.A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: current applications and future prospects. Biocatalysis and Agricultural Biotechnology. 28: 101750. [DOI: 10.1016/ j.bcab.2020.101750] [DOI:10.1016/j.bcab.2020.101750]
14. Darbandi A., Asadi A., Mahdizade Ari M., Ohadi E., Talebi M., Halaj Zadeh M., Darb Emamie A., Ghanavati R., Kakanj M. (2022). Bacteriocins: properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis. 36: e24093. [DOI: 10.1002/jcla.24093] [DOI:10.1002/jcla.24093]
15. Das D., Goyal A. (2014). Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative. Food and Function. 5: 2453-2462. [DOI: 10.1039/C4FO00481G] [DOI:10.1039/C4FO00481G] [PMID]
16. Dicks L.M.T., Dreyer L., Smith C., Van Staden A.D. (2018). A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier?. Frontiers in Microbiology. 9: 2297. [DOI: 10.3389/fmicb.2018.02297] [DOI:10.3389/fmicb.2018.02297] [PMID] [PMCID]
17. Dini I., De Biasi M.-G., Mancusi A. (2022). An overview of the potentialities of antimicrobial peptides derived from natural sources. Antibiotics. 11: 1483. [DOI: 10.3390/ antibiotics11111483] [DOI:10.3390/antibiotics11111483] [PMID] [PMCID]
18. Du R., Ping W., Ge J. (2022). Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. LWT - Food Science and Technology. 153: 112451. [DOI: 10.1016/j.lwt.2021.112451] [DOI:10.1016/j.lwt.2021.112451]
19. FAO/WHO. (2002). Guidelines for the evaluation of probiotics in food. Joint FAO/WHO working group. London, Ontario, Canada, April 30 and May 1, 2002. URL: http://fanus.com. ar/posgrado/10-09-25/fao%20probiotics.pdf.
20. Gautam N., Sharma N. (2009). Bacteriocin: safest approach to preserve food products. Indian Journal of Microbiology. 49: 204-211. [DOI: 10.1007/s12088-009-0048-3] [DOI:10.1007/s12088-009-0048-3] [PMID] [PMCID]
21. Ge J., Sun Y., Xin X., Wang Y., Ping W. (2016). Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice. Scientific Reports. 6: 19366. [DOI: 10.1038/srep19366] [DOI:10.1038/srep19366] [PMID] [PMCID]
22. Gillor O., Etzion A., Riley M.A. (2008). The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology. 81: 591-606. [DOI: 10.1007/s00253-008-1726-5] [DOI:10.1007/s00253-008-1726-5] [PMID] [PMCID]
23. Goh H.F., Philip K. (2015). Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. Plos One. 10: e0140434. [DOI: 10.1371/journal.pone. 0140434] [DOI:10.1371/journal.pone.0140434] [PMID] [PMCID]
24. He G.Q., Kong Q., Ding L.X. (2004). Response surface methodology for optimizing the fermentation medium of Clostridium butyricum. Letters in Applied Microbiology. 39: 363-368. [DOI: 10.1111/j.1472-765X.2004.01595.x] [DOI:10.1111/j.1472-765X.2004.01595.x] [PMID]
25. He J., Zhen Q., Qiu N., Liu Z., Wang B., Shao Z., Yu Z. (2009). Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a′ using response surface methodology. Bioresource Technology. 100: 5922-5927. [DOI: 10.1016/j.biortech.2009.06.087] [DOI:10.1016/j.biortech.2009.06.087] [PMID]
26. Jones K.R., John R.E., Sundaram V. (2022). Morpho-histological studies of the gastrointestinal tract of the orange-rumped agouti (Dasyprocta leporina Linnaeus, 1758), with special reference to morphometry and histometry. Animals. 12: 2493. [DOI: 10.3390/ani12192493] [DOI:10.3390/ani12192493] [PMID] [PMCID]
27. Kaur S., Kaur S. (2015). Bacteriocins as potential anticancer agents. Frontiers in Pharmacology. 6: 272. [DOI: 10.3389/ fphar.2015.00272] [DOI:10.3389/fphar.2015.00272] [PMID] [PMCID]
28. Khandelwal P., Upendra R.S. (2019). Nanotechnology and bacteriocins: perspectives and opportunities. In: Dasarahally-Huligowda L.K., Goyal M.R., Suleria H.A.R. (Editors). Nanotechnology applications in dairy science. 1st edition. Apple Academic Press, New York.
29. Khorshidian N., Khanniri E., Mohammadi M., Mortazavian A.M., Yousefi M. (2021) Antibacterial activity of pediocin and pediocin-producing bacteria against Listeria monocytogenes in meat products. Frontiers in Microbiology. 12: 709959. [DOI: 10.3389/fmicb.2021.709959] [DOI:10.3389/fmicb.2021.709959] [PMID] [PMCID]
30. Lau A.S., Liong M.T. (2014). Lactic acid bacteria and bifidobacteria-inhibited Staphylococcus epidermidis. Wounds: a Compendium of Clinical Research and Practice. 26: 121-131.
31. Li C., Bai J., Cai Z., Ouyang F. (2002). Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology. 93: 27-34. [DOI: 10.1016/S0168-1656(01)00377-7] [DOI:10.1016/S0168-1656(01)00377-7] [PMID]
32. Noonpakdee W., Santivarangkna C., Jumriangrit P., Sonomoto K., Panyim S. (2003). Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. International Journal of Food Microbiology. 81: 137-145. [DOI: 10.1016/S0168-1605(02)00219-2] [DOI:10.1016/S0168-1605(02)00219-2] [PMID]
33. Pérez-Ramos A., Madi-Moussa D., Coucheney F., Drider D. (2021). Current knowledge of the mode of action and immunity mechanisms of lab-bacteriocins. Microorganisms. 9: 2107. [DOI: 10.3390/microorganisms9102107] [DOI:10.3390/microorganisms9102107] [PMID] [PMCID]
34. Perumal V., Repally A., Dasari A., Venkatesan A. (2016). Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes. Preparative Biochemistry and Biotechnology. 46: 686-694. [DOI: 10.1080/10826068.2015.1135451] [DOI:10.1080/10826068.2015.1135451] [PMID]
35. Ray B. (1995). Pediococcus in fermented foods. In: Hui Y.H., Khachatourians G.G. (Editors). Food biotechnology microorganisms. VCH, USA, New York. pp 745-795.
36. Sadhukhan B., Mondal N.K., Chattoraj S. (2016). Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala International Journal of Modern Science. 2: 145-155. [DOI: 10.1016/j.kijoms.2016. 03.005] [DOI:10.1016/j.kijoms.2016.03.005]
37. Shehata M.G., Abd El Aziz N.M., Youssef M.M., El-Sohaimy S.A. (2021). Optimization conditions of ultrasound-assisted extraction of phenolic compounds from orange peels using response surface methodology. Journal of Food Processing and Preservation. 45: e15870. [DOI: 10.1111/jfpp.15870] [DOI:10.1111/jfpp.15870]
38. Shehata M.G., Abu-Serie M.M., Abd El-Aziz N.M., El-Sohaimy S.A. (2019a). In vitro assessment of antioxidant, antimicrobial and anticancer properties of lactic acid bacteria. International Journal of Pharmacology. 15: 651-663. [DOI: 10.3923/ijp.2019.651.663] [DOI:10.3923/ijp.2019.651.663]
39. Shehata M.G., Badr A.N., El Sohaimy S.A., Asker D., Awad T.S. (2019b). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences. 64: 71-78 [DOI: 10.1016/j.aoas.2019.05.002] [DOI:10.1016/j.aoas.2019.05.002]
40. Shehata M.G., El Sohaimy S.A., El-Sahn M.A., Youssef M.M. (2016). Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Sciences. 61: 65-75. [DOI: 10.1016/j.aoas.2016.03.001] [DOI:10.1016/j.aoas.2016.03.001]
41. Singh J.P., Ghosh C. (2012). Ribosomal encoded bacteriocins: their functional insight and applications. Journal of Microbiology Research. 2: 19-25. [DOI: 10.5923/j.microbiology. 20120202.04] [DOI:10.5923/j.microbiology.20120202.04]
42. Soltani S., Hammami R., Cotter P.D., Rebuffat S., Ben Said L., Gaudreau H., Bédard F., Biron E., Drider D., Fliss I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews. 45: 1-24. [DOI: 10.1093/femsre/fuaa039] [DOI:10.1093/femsre/fuaa039] [PMID] [PMCID]
43. Todorov S.D., Popov I., Weeks R., Chikindas M.L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods. 11: 3145. [DOI: 10.3390/foods11193145] [DOI:10.3390/foods11193145] [PMID] [PMCID]
44. Tolinački M., Kojić M., Lozo J., Terzić-Vidojević A., Topisirović L., Fira D. (2010). Characterization of the bacteriocin-producing strain Lactobacillus paracasei subsp. Paracasei bgub9. Archives of Biological Sciences. 62: 889-899. [DOI: 10.2298/ABS1004889T] [DOI:10.2298/ABS1004889T]
45. Tong S.Y.C., Davis J.S., Eichenberger E., Holland T.L., Fowler Jr V.G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews. 28: 603-661. [DOI: 10.1128/CMR.00134-14] [DOI:10.1128/CMR.00134-14] [PMID] [PMCID]
46. Udhayashree N., Senbagam D., Senthilkumar B., Nithya K., Gurusamy R. (2012). Production of bacteriocin and their application in food products. Asian Pacific Journal of Tropical Biomedicine. 2: S406-S410. [DOI: 10.1016/S2221-1691(12)60197-X] [DOI:10.1016/S2221-1691(12)60197-X]
47. Ullah N., Wang X., Wu J., Guo Y., Ge H., Li T., Khan S., Li Z., Feng X. (2017). Purification and primary characterization of a novel bacteriocin, LiN333, from Lactobacillus casei, an isolate from a Chinese fermented food. LWT - Food Science and Technology. 84: 867-875. [DOI: 10.1016/j.lwt.2017. 04.056] [DOI:10.1016/j.lwt.2017.04.056]
48. Wang Z., Shen Y., Ma J., Haapasalo M. (2012). The effect of detergents on the antibacterial activity of disinfecting solutions in dentin. Journal of Endodontics. 38: 948-953. [DOI: 10.1016/j.joen.2012.03.007] [DOI:10.1016/j.joen.2012.03.007] [PMID]
49. Wang Z.-W., Liu X.-L. (2008). Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology. 99: 8245-8251. [DOI: 10.1016/j. biortech.2008.03.039] [DOI:10.1016/j.biortech.2008.03.039] [PMID]
50. Yang S.-C., Lin C.-H., Sung C.T., Fang J.-Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology. 5: 241. [DOI: 10.3389/ fmicb.2014.00241] [DOI:10.3389/fmicb.2014.00241]
51. Yi L., Dang Y., Wu J., Zhang L., Liu X., Liu B., Zhou Y., Lu X. (2016). Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. Journal of Dairy Science. 99: 7002-7015. [DOI: 10.3168/jds.2016-11166] [DOI:10.3168/jds.2016-11166] [PMID]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb