Volume 10, Issue 2 (June 2023)                   J. Food Qual. Hazards Control 2023, 10(2): 62-69 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Adesina J, Jose A, Ileke K, Mobolade-Adesina T, Komolafe O. Evaluation of the Amount of Some Metals, Fatty Acid and Microbial Load of African Palm Weevil Larvae Rhynchophorus phoenicis (Coleoptera: Curculionidae) Collected from Ondo State, Nigeria. J. Food Qual. Hazards Control 2023; 10 (2) :62-69
URL: http://jfqhc.ssu.ac.ir/article-1-1060-en.html
Department of Crop Production Technology, Rufus Giwa Polytechnic, P.M.B. 1,019, Owo, Ondo State, Nigeria , moboladesina@rugipo.edu.ng
Abstract:   (527 Views)
Background: Edible insects are rich in protein, amino acids, fat, vitamins, and trace elements. However, they are the potential carriers of toxicants, allergenic substances, anti-nutrients, and pathogens. The present study aims to determine the proximate and nutritional, fatty acid, metal composition, and microbial load of palm weevil larvae (Rhynchophorus phoenicis Fabricius, (Coleoptera: Curculionidae)), an insect species commonly consumed in Nigeria.
Methods: Twenty five R. phoenicis were randomly collected in April, 2021 from different local farms. The insects were exterminated by freezing and thereafter defrosted at room temperature in the laboratory; with the exception of the samples for moisture analysis, they were oven dried to a constant weight at around 65 °C for 24 h, grounded, and analyzed for proximate content, fatty acids, metals, and microbial load following standard laboratory procedures.
Results: The results show that R. phoenicis contained 45.60% crude fat, 15.79% crude fiber, and 5.25% crude protein by weight. Linoleic acid, oleic acid, and palmitic acid made up most of the fatty acid concentrations at 54.13, 23.86, and 14.19%, respectively. Iron (Fe) content was the highest metal (4.923 ppm), followed by manganese (Mn; 2.767 ppm) and zinc (Zn; 1.04 ppm). The isolated microorganisms were mold and yeast (5×10-5 Colony Forming Unit (CFU)/g), Staphylococcus sp. (33×10-5 CFU/g), and Micrococcus/Bacillus substilis sp. (5×10-5 CFU/g).
Conclusion: The high nutritional composition present in R. phoenicis evaluated in this study, compared to the dietary protein value obtained from other animal food sources, suggests the need for their adoption as animal protein and essential fatty acid sources in human diets.

DOI: 10.18502/jfqhc.10.2.12668
Full-Text [PDF 412 kb]   (279 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/01/08 | Accepted: 23/05/10 | Published: 23/06/28

References
1. Ademola O.A., Abioye O.R. (2017). Proximate composition, mineral content and mineral safety index of Lablab Purpureus seed flour. International Journal of Science and Healthcare Research. 2: 44-50.
2. Akullo J., Agea J.G., Obaa B.B., Okwee-Acai J., Nakimbugwe D. (2018). Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. International Food Research Journal. 25: 159-166.
3. Alamu O.T., Amao A.O., Nwokedi C.I., Oke O.A., Lawa I.O. (2013). Diversity and nutritional status of edible insects in Nigeria: a review. International Journal of Biodiversity and Conservation. 5: 215-222. [DOI: 10.5897/IJBC12.121]
4. AOAC. (2012). Official methods of analysis. Association of Official Analytical Chemists, Washington D.C, USA.
5. Awobusuyi T.D., Pillay K., Siwela M. (2020). Consumer acceptance of biscuits supplemented with a sorghum-insect meal. Nutrients. 12: 895. [DOI: 10.3390/nu12040895] [DOI:10.3390/nu12040895] [PMID] [PMCID]
6. Banjo A.D., Lawal O.A., Songonuga E.A. (2006). The nutritional value of fourteen species of edible insects in southwestern Nigeria. African Journal of Biotechnology. 5: 298-301. [DOI: 10.5897/AJB05.250]
7. Bessa L.W., Pieterse E., Sigge G., Hoffman L.C. (2020). Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture. 100: 5017-5022. [DOI: 10.1002/jsfa.8860] [DOI:10.1002/jsfa.8860] [PMID]
8. Botineștean C., Hădărugă N.G., Hădărugă D.I., Jianu I. (2012). Fatty acids composition by gas chromatography-mass spectrometry (GC-MS) and most important physical-chemicals parameters of tomato seed oil. Journal of Agroalimentary Processes and Technologies. 18: 89-94.
9. Braide W., Nwaoguikpe R.N. (2011). Assessment of microbiological quality and nutritional values of a processed edible weevil caterpillar (Rhynchophorus phoenicis) in Port Harcourt, southern Nigeria. International Journal of Biological and Chemical Sciences. 5: 410-418. [DOI: 10.4314/ijbcs.v5i2.72059] [DOI:10.4314/ijbcs.v5i2.72059]
10. Chaney S.G. (2006). Principles of nutrition II: micronutrients. In: Devlin T.M. (Editor). Textbook of biochemistry with clinical correlation. 6th edition. John Wiley and Sons, New York. pp: 1091-1120.
11. Chia S.Y., Tanga C.M., Van Loon J.J., Dicke M. (2019). Insects for sustainable animal feed: inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability. 41: 23-30. [DOI: 10.1016/j.cosust.2019.09.003] [DOI:10.1016/j.cosust.2019.09.003]
12. Ebenebe C.I., Okpoko V.O. (2015). Microbiological quality of raw and roasted African palm weevil (Rhynchophorus phoenicis) consumed in the south eastern Nigeria. Animal Research International. 12: 2159-2165.
13. Edijala J.K., Egbogbo O., Anigboro A.A. (2009). Proximate composition and cholesterol concentrations of Rhynchophorus phoenicis and Oryctes monoceros larvae subjected to different heat treatments. African Journal of Biotechnology. 8: 2346-2348.
14. Ehounou G.P., Ouali-N'goran S.-W.M., Soro D., Bedikou M.E. (2019). Nutrient contributions of Rhynchophorus phoenicis Fabricius, 1801 (Coleoptera: Curculionidae), very appreciated larvae in Côte d'Ivoire compared with beef (N'Dama breed) and thon (Thunnus thynnus). International Journal of Biological and Chemical Sciences. 13: 2092-2103. [DOI: 10.4314/ijbcs.v13i4.16] [DOI:10.4314/ijbcs.v13i4.16]
15. Ekop E.A., Udoh A.I., Akpan P.E. (2010). Proximate and anti-nutrient composition of four edible insects in Akwa Ibom state, Nigeria. World Journal of Applied Science and Technology. 2: 224-231.
16. Ekpo K.E., Onigbinde A.O., Asia I.O. (2009). Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. African Journal of Pharmacy and Pharmacology. 3: 051-057.
17. Elemo B.O., Elemo G.N., Makinde M.A., Erukainure O.L. (2011). Chemical evaluation of African palm weevil, Rhychophorus phoenicis, larvae as a food source. Journal of Insect Science. 11: 146. [DOI: 10.1673/031.011.14601] [DOI:10.1673/031.011.14601] [PMID] [PMCID]
18. Feng Y., Chen X.-M., Zhao M., He Z., Sun L., Wang C.-Y., Ding W.-F. (2017). Edible insects in China: utilization and prospects. Insect Science. 25: 184-198. [DOI: 10.1111/1744-7917.12449] [DOI:10.1111/1744-7917.12449] [PMID]
19. Geraldine O.C., Beth A.M. (2008). Bacteria in the intestine, helpful residents or enemies from within?. Infection and Immunity. 76: 3360-3373. [DOI: 10.1128/IAI.00187-08] [DOI:10.1128/IAI.00187-08] [PMID] [PMCID]
20. Hemalata V.B., Virupakshaiah D.B.M. (2016). Isolation and identification of food borne pathogens from spoiled food samples. International Journal of Current Microbiology and Applied Sciences. 5: 1017-1025. [DOI: 10.20546/ijcmas.2016.506.108] [DOI:10.20546/ijcmas.2016.506.108]
21. Hlongwane Z.T., Slotow R., Munyai T.C. (2020). Nutritional composition of edible insects consumed in Africa: a systematic review. Nutrients. 12: 2786. [DOI: 10.3390/nu12092786] [DOI:10.3390/nu12092786] [PMID] [PMCID]
22. Iwegbu A., Igene U.F. (2022). Assessment of proximate composition, minerals and vitamins of bush buck (Gongronema latifolia) leaf meal and leaf extracts. Canadian Journal of Agricultural and Applied Sciences. 2: 1-16. [DOI: 10.5281/zenodo.7032773]
23. Jacob A.A., Emenike A.F., Kayode A., Olusegun O., Uzoma A., Rukayat K.Q. (2013). Entomophagy: a panacea for protein-deficient-malnutrition and food insecurity in Nigeria. Journal of Agricultural Science. 5: 2013. [DOI: 10.5539/jas.v5n6p25] [DOI:10.5539/jas.v5n6p25]
24. Johnson D.V. (2010). The Contribution of edible forest insects to human nutrition and to forest management. In: Durst P.B., Johnson D.V., Leslie R.N., Shono K. (Editors). Forest insects as food: humans bite back. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. pp: 5-22.
25. Kumar A., Kumar A., Cabral-Pinto M.M.S., Chaturvedi A.K., Shabnam A.A., Subrahmanyam G., Mondal R., Gupta D.K., Malyan S.K., Kumar S.S., Khan S.A., Yadav K.K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health. 17: 2179. [DOI: 10.3390/ijerph17072179] [DOI:10.3390/ijerph17072179] [PMID] [PMCID]
26. Lin P.-H., Sermersheim M., Li H., Lee P.H.U., Steinberg S.M., Ma J. (2018). Zinc in wound healing modulation. Nutrients. 10: 16. [DOI: 10.3390/nu10010016] [DOI:10.3390/nu10010016] [PMID] [PMCID]
27. Mlcek J., Rop O., Borkovcova M., Bednarova M. (2014). A comprehensive look at the possibilities of edible insects as food in Europe - a review. Polish Journal of Food and Nutrition Sciences. 64: 147-157. [DOI: 10.2478/v10222-012-0099-8] [DOI:10.2478/v10222-012-0099-8]
28. Nwaehujor I.U., Inana M.E., Azeke E.A., Okoroafor C.H., Abdulbaki M.K., Okike O.O., Nwachukwu E.F. (2022). Microbial and fungal contamination of staple foods in Port Harcourt, Nigeria: special attention to high aflatoxin risk. Journal of Food Quality and Hazards Control. 9: 190-198. [DOI: 10.18502/jfqhc.9.4.11374] [DOI:10.18502/jfqhc.9.4.11374]
29. Offiah C.J., Fasalejo O.F., Akinbowale A.S. (2019). Evaluation of nutritional and anti-nutritional values of Oryctes rhinoceros larvae in Ondo State, Nigeria. Journal of Entomology and Zoology Studies. 7: 204-207.
30. Okaraonye C.C., Ikewuchi J.C. (2008). Rhynchophorus phoenicis (F) larva meal: nutritional value and health implications. Journal of Biological Sciences. 8: 1221-1225. [DOI: 10.3923/jbs.2008. 1221.1225] [DOI:10.3923/jbs.2008.1221.1225]
31. Okoli I.C., Olodi W.B., Ogbuewu I.P., Aladi N.O., Okoli C.G. (2019). Nutrient composition of African palm grub (Rhynchophorus phoenicis) larvae harvested from raphia palm trunk in the Niger-delta swamps of Nigeria. Asian Journal of Biological Sciences. 12: 284-290. [DOI: 10.3923/ajbs.2019.284.290] [DOI:10.3923/ajbs.2019.284.290]
32. Omotoso O.T. (2015). Nutrient composition, mineral analysis and anti-nutrient factors of Oryctes rhinoceros L. (Scarabaeidae: Coleoptera) and winged termites, Marcrotermes nigeriensis Sjostedt. (Termitidae: Isoptera). Current Journal of Applied Science and Technology. 8: 97-106. [DOI: 10.9734/BJAST/ 2015/15344] [DOI:10.9734/BJAST/2015/15344]
33. Omotoso O.T., Adedire C.O. (2007). Nutrient composition, mineral content and the solubility of the proteins of palm weevil, Rhynchophorus phoenicis f. (Coleoptera: Curculionidae). Journal of Zhejiang University Science B. 8: 318-322. [DOI: 10.1631/ jzus.2007.B0318] [DOI:10.1631/jzus.2007.B0318] [PMID] [PMCID]
34. Onyeike E.N., Ayalogu E.O., Okaraonye C.C. (2005). Nutritive value of the larvae of raphia palm beetle (Oryctes rhinoceros) and weevil (Rhyncophorus pheonicis). Journal of the Science of Food and Agriculture. 85: 1822-1828. [DOI: 10.1002/jsfa.2054] [DOI:10.1002/jsfa.2054]
35. Opara M.N., Sanyigha F.T., Ogbuewu I.P., Okoli I.C. (2012). Studies on the production trend and quality characteristics of palm grubs in the tropical rainforest zone of Nigeria. Journal of Agricultural Technology. 8: 851-860.
36. Oso A.A., Ashafa O.A. (2021). Nutritional composition of grain and seed proteins. In: Jimenez-Lopez J.C. (Editor). Grain and seed proteins functionality. Books on Demand, London, United Kingdom. pp: 31-50. [DOI: 10.5772/intechopen.97878] [DOI:10.5772/intechopen.97878]
37. Owolabi D.O., Ajiboyede O.K. (2022). Proximate and mineral analysis of red palm weevil (Rhychophorus ferrugineus) larvae. International Journal of Entomology Research. 7: 120-124.
38. Prescott L.M., Harley J.P., Klein D.A. (2011). Microbiology. 8th edition. WMC Brown, London.
39. Raksakantong P., Meeso N., Kubola J., Siriamornpun S. (2010). Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Research International. 43: 350-355. [DOI: 10.1016/j.foodres.2009.10.014] [DOI:10.1016/j.foodres.2009.10.014]
40. Rashid U., Anwar F., Moser B.R., Ashraf S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy. 32: 1202-1205. [DOI: 10.1016/j.biombioe.2008.03.001] [DOI:10.1016/j.biombioe.2008.03.001]
41. Reineke K., Doehner I., Schlumbach K., Baier D., Mathys A., Knorr D. (2012). The different pathways of spore germination and inactivation in dependence of pressure and temperature. Innovative Food Science and Emerging Technologies. 13: 31-41. [DOI: 10.1016/j.ifset.2011.09.006] [DOI:10.1016/j.ifset.2011.09.006]
42. Rumpold B.A., Schlüter O.K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research. 57: 802-823. [DOI: 10.1002/mnfr.201200735] [DOI:10.1002/mnfr.201200735] [PMID]
43. Sales-Campos H., Reis De Souza P., Crema Peghini B., Santana Da Silva J., Ribeiro Cardoso C. (2013). An overview of the modulatory effects of oleic acid in health and disease. Mini-Reviews in Medicinal Chemistry. 13: 201-210. [DOI: 10.2174/1389557511313020003] [DOI:10.2174/1389557511313020003] [PMID]
44. Saris N.-E.L., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A. (2000). Magnesium: an update on physiological, clinical, and analytical aspects. Clinica Chimica Acta. 294: 1-26. [DOI: 10.1016/s0009-8981(99)00258-2] [DOI:10.1016/S0009-8981(99)00258-2] [PMID]
45. Shantibala T., Lokeshwari R.K., Debaraj H. (2014). Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. Journal of Insect Science. 14: 14. [DOI: 10.1093/jis/14.1.14] [DOI:10.1093/jis/14.1.14] [PMID] [PMCID]
46. Stork N.E. (2018). How many species of insects and other terrestrial arthropods are there on earth?. Annual Review of Entomology. 63: 31-45. [DOI: 10.1146/annurev-ento-020117-043348] [DOI:10.1146/annurev-ento-020117-043348] [PMID]
47. Tan S. (2022). What are the health benefits of grasshoppers?. URL: https://www.webmd.com/diet/what-health-benefits-grasshoppers.
48. Tang C., Yang D., Liao H., Sun H., Liu C., Wei L., Li F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition. 1: 8. [DOI: 10.1186/s43014-019-0008-1] [DOI:10.1186/s43014-019-0008-1]
49. Thomas C.N. (2018). Nutritional potentials of edible larvae of longhorned beetle (Apomecyna parumpunctata Chev.) (Coleoptera: Cerambycidae) in Niger delta, Nigeria. International Journal of Agriculture and Earth Science. 4: 46-51.
50. Xiaoming C., Ying F., Hong Z., Zhiyong C. (2010). Review of the nutritive value of edible insects. In: Durst P.B., Johnson D.V., Leslie R.N., Shono K. (Editors). Forest insects as food: humans bite back. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. pp: 85-92.
51. Yin W., Liu J., Liu H., Lv B. (2017). Nutritional value, food ingredients, chemical and species composition of edible insects in China. In: Mikkola H. (Editor). Future foods. Books on Demand, London, United Kingdom. pp: 27-54. [DOI: 10.5772/intechopen. 70085] [DOI:10.5772/intechopen.70085]
52. Zabentungwa T.H., Rob S., Thinandavha C.M. (2021). Indigenous knowledge about consumption of edible insects in South Africa. Insects. 12: 22. [DOI: 10.3390/insects12010022] [DOI:10.3390/insects12010022] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb