Volume 11, Issue 1 (March 2024)                   J. Food Qual. Hazards Control 2024, 11(1): 39-46 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Oyedeji A, Odeyemi B, Azeez L. Dietary Risk Assessment of Cyromazine and Its Analogue Melamine in Evaporated and Infant Milk Samples in Nigeria. J. Food Qual. Hazards Control 2024; 11 (1) :39-46
URL: http://jfqhc.ssu.ac.ir/article-1-1064-en.html
Department of Science Laboratory Technology, the Federal Polytechnic, Ilaro, Nigeria , olalekan.oyedeji@federalpolyilaro.edu.ng
Abstract:   (367 Views)
Background: The safety of milk is considered as a significant public health consideration and has been a key concern for consumers worldwide. The concentrations of cyromazine and its metabolic product, melamine, and their dietary risk assessment are investigated in this study.
Methods: A total of 182 milk samples containing 15 brands were sampled between June and December 2022 from major and retail markets in Nigeria. After a solid-phase extraction procedure, the concentrations of the two compounds were determined using High-Performance Liquid Chromatography coupled with a Diode-Array Detector. Solid-phase extraction was utilized to extract local and imported evaporated and infant milk with CCl3COOH and CH3CN, followed by clean-up with NH4OH in MeOH. The extracts were analyzed with Agilent High-Performance Liquid Chromatography, including a Zorbax Eclipse+C18 column.
Results: For both melamine and cyromazine, the Limits of Detection and Limits of Quantification were 1.29-1.48 and 3.94-4.50 µg/kg, respectively. The precision (Relative Standard Deviation<1), recovery (99.5–102.5%), and regression (r2=0.989) were all excellent. Melamine concentration ranged between 57.6±18.9 and 930.3±379.9 µg/kg among the samples, and cyromazine was 57.2±12.3 and 670.9±87.8 µg/kg. Brand 2, imported from Holland, had the highest detection frequency for the two analytes. Disturbing levels of melamine were detected in Brand 2, particularly that 75 and 95% of the samples had melamine above the acceptable Maximum Residue Limit.  However, the estimated daily exposure to the two additives was below the allowed daily intake values, and the Hazard Index (HI) in the different milk samples ranged from 0.02 to 1.22, with one sample having HI>1.
Conclusion: The exposure risk of melamine and cyromazine among the general population is acceptable, and smaller HI values demonstrated no significant potential risk for the Nigerian population according to the recommended guidelines. Regulatory agencies are encouraged to step up their surveillance activities to forestall the inclusion of prohibited additives in local and imported milk to protect public health.

DOI: 10.18502/jfqhc.11.1.14994
Full-Text [PDF 389 kb]   (213 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/01/20 | Accepted: 23/12/30 | Published: 24/03/26

References
1. Abedini R., Jahed Khaniki G., Molaee Aghaee E., Sadighara P., Nazmara S., Akbari-Adergani B., Naderi M. (2021). Determination of melamine contamination in chocolates containing powdered milk by high-performance liquid chromatography (HPLC). Journal of Environmental Health Science and Engineering. 19: 165-171. [DOI: 10.1007/s40201-020-00590-w] [DOI:10.1007/s40201-020-00590-w] [PMID] [PMCID]
2. Abernethy G., Higgs K. (2013). Detection of 3-amino-1,2,4-triazine adulteration in milk using an oxidation product 3-amino-1,2,4-triazin-5(2H)-one. Journal of Chromatography A. 1285: 165-167. [DOI: 10.1016/ j.chroma.2013.02.021] [DOI:10.1016/j.chroma.2013.02.021] [PMID]
3. Andersen W.C., Turnipseed S.B., Karbiwnyk C.M., Evans E., Hasbrouck N., Mayer T.D., Gieseker C.M., Nochetto C., Stine C.B., Reimschuessel R. (2011). Bioaccumulation of melamine in catfish muscle following continuous, low-dose, oral administration. Journal of Agricultural and Food Chemistry. 59: 3111-3117. [DOI: 10.1021/jf104385d] [DOI:10.1021/jf104385d] [PMID]
4. Botelho B.G., Reis N., Oliveira L.S., Sena M.M. (2015). Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chemistry. 181: 31-37. [DOI: 10.1016/j.foodchem.2015.02.077] [DOI:10.1016/j.foodchem.2015.02.077] [PMID]
5. Centre for Disease Control and Prevention (CDC). (2001). Data table of infant weight-for-age charts. URL: https://www.cdc.gov/ growthcharts/html_charts/wtageinf.htm. Accessed 20 September 2022.
6. Centre for Disease Control and Prevention (CDC). (2022). How much and how often to feed infant formula. URL: https://www.cdc.gov/nutrition/infantandtoddlernutrition/formula-feeding/how-much-how-often.html#:~:text=You%20can%20start%20by%20offering,12%20times%20in%2024%20hours. Accessed 20 September 2022.
7. Dorne J.L., Doerge D.R., Vandenbroeck M., Fink-Gremmels J., Mennes W., Knutsen H.K., Vernazza F., Castle L., Edler L., Benford D. (2013). Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicology and Applied Pharmacology. 270: 218-229. [DOI: 10.1016/j.taap.2012.01.012] [DOI:10.1016/j.taap.2012.01.012] [PMID]
8. DutchNews. (2008). Friesland Foods withdraws milk products. URL: https://www.dutchnews.nl/2008/09/friesland_foods_withdraws_milk. Accessed 10 January 2024.
9. Food and Agriculture Organisation (FAO). (2008). Overview: melamine contamination of dairy products in China. URL: https://www. fao.org/food/food-safety-quality/a-z-index/melamine/en/. Accessed 30 September 2022.
10. García M.Á., Santaeufemia M., Melgar M.J. (2012). Triazine residues in raw milk and infant formulas from Spanish Northwest, by a diphasic dialysis extraction. Food and Chemical Toxicology. 50: 503-510. [DOI: 10.1016/ j.fct.2011.11.019] [DOI:10.1016/j.fct.2011.11.019] [PMID]
11. Guo J., Wu C., Zhang J., Chang X., Zhang Y., Cao Y., Zhou Z. (2020). Associations of melamine and cyanuric acid exposure with markers of kidney function in adults: results from NHANES.2003-2004. Environment International. 141: 105815. [DOI: 10.1016/j.envint.2020.105815] [DOI:10.1016/j.envint.2020.105815] [PMID]
12. Guo Z., Cheng Z., Li R., Chen L., Lv H., Zhao B., Choo J. (2014). One-step detection of melamine in milk by hollow gold chip based on surface-enhanced Raman scattering. Talanta. 122: 80-84. [DOI: 10.1016/ j.talanta.2014.01.043] [DOI:10.1016/j.talanta.2014.01.043]
13. Huang M., Kim M.S., Delwiche S.R., Chao K., Qin J., Mo C., Esquerre C., Zhu Q. (2016). Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio. Journal of Food Engineering. 181: 10-19. [DOI: 10.1016/j. jfoodeng.2016.02.017] [DOI:10.1016/j.jfoodeng.2016.02.017]
14. Ionescu A.-D., Cîrîc A.I., Begea M. (2023). A review of milk frauds and adulterations from a technological perspective. Applied Sciences. 13: 9821. [DOI: 10.3390/app13179821] [DOI:10.3390/app13179821]
15. Izuaka M. (2021). 60% of dairy products consumed in Nigeria imported. Premiumtimes, Nigeria. URL: https://www. premiumtimesng.com/ news/more-news/452244-60-of-dairy-products-consumed-in-nigeria-imported-minister.htmlml. Accessed 27 August 2021.
16. Kunzelmann M., Winter M., Åberg M., Hellenäs K.-E., Rosén J. (2018). Non-targeted analysis of unexpected food contaminants using LC-HRMS. Analytical and Bioanalytical Chemistry. 410: 5593-5602. [DOI: 10.1007/s00216-018-1028-4] [DOI:10.1007/s00216-018-1028-4] [PMID] [PMCID]
17. Lad S.S., Aparnathi K.D. (2017). Melamine: a monster in the milk. International Journal of Current Microbiology and Applied Sciences.6: 876-882. [DOI: 10.20546/ijcmas. 2017.604.110] [DOI:10.20546/ijcmas]
18. Lim J., Kim G., Mo C., Kim M.S., Chao K., Qin J., Fu X., Baek I., Cho B-K. (2016). Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model. Talanta. 151: 183-191. [DOI: 10.1016/j.talanta.2016.01.035] [DOI:10.1016/j.talanta.2016.01.035] [PMID]
19. Maleki J., Nazari F., Yousefi J., Khosrokhavar R., Hosseini M.-J. (2018). Determinations of melamine residue in infant formula brands available in Iran market by HPLC method. Iranian Journal of Pharmaceutical Research. 17: 563-570.
20. Melough M.M., Foster D., Fretts A.M., Sathyanarayana S. (2020). Dietary sources of melamine exposure among US children and adults in the national health and nutrition examination survey 2003-2004. Nutrients. 12: 3844. [DOI: 10.3390/nu12123844] [DOI:10.3390/nu12123844] [PMID] [PMCID]
21. Momtaz M., Bubli S.Y., Khan M.S. (2023). Mechanisms and health aspects of food adulteration: a comprehensive review. Foods. 12: 199. [DOI: 10.3390/foods12010199] [DOI:10.3390/foods12010199] [PMID] [PMCID]
22. Nasution A.M.T., Suyanto H. (2022). Infrared spectroscopy for detecting adulterants in food and traditional Indonesian herbal medicine. In: El-Azazy M., Al-Saad K., El-Shafie A. (Editors). Infrared spectroscopy - perspectives and applications. IntechOpen, London, United Kingdom. [DOI: 10.5772/intechopen.106803] [DOI:10.5772/intechopen.106803]
23. Oyedeji A.O., Azeez L., Odeyemi B.A. (2021). Quantification of cyromazine and melamine in fish and poultry feeds by high performance liquid chromatography - diode array detection. Journal of Chemical Society of Nigeria. 46: 0444-0453. [DOI: 10.46602/ jcsn.v46i3.620] [DOI:10.46602/jcsn.v46i3.620]
24. Oyedeji A.O., Msagati T.A.M., Williams A.B., Benson N.U. (2020). Solid-phase extraction and high performance liquid chromatography with diode array detection method for the determination of antibiotic residues in poultry tissues. Chemical Data Collections. 25: 100312. [DOI: 10.1016/j.cdc.2019.100312] [DOI:10.1016/j.cdc.2019.100312]
25. Poorjafari N., Zamani A., Mohseni M., Parizanganeh A. (2015). Assessment of residue melamine in dairy products exhibited in Zanjan market, Iran by high-performance liquid chromatography method. International Journal of Environmental Science and Technology. 12: 1003-1010. [DOI: 10.1007/s13762-014-0707-8] [DOI:10.1007/s13762-014-0707-8]
26. Qin X., Jiang Y., Wang Z., Man C., Fu S., Chen S., Yang X., Yang T., Zhang D., Li L., Fox E.M.,Wei Z. (2020). The migration of acetochlor from feed to milk. RSC Advances. 10: 44344-44351. [DOI: 10.1039/ D0RA06895K] [DOI:10.1039/D0RA06895K]
27. Sathyanarayana S., Flynn J.T., Messito M.J., Gross R., Whitlock K.B., Kannan K., Karthikraj R., Morrison D., Huie M., Christakis D., Trasande L. (2019). Melamine and cyanuric acid exposure and kidney injury in US children. Environmental Research. 171: 18-23. [DOI: 10.1016/j.envres.2018.10.038] [DOI:10.1016/j.envres.2018.10.038] [PMID]
28. Shi X., Dong R., Chen J., Yuan Y., Long Q., Guo J., Li S., Chen B. (2020). An assessment of melamine exposure in Shanghai adults and its association with food consumption. Environment International. 135: 105363. [DOI: 10.1016/j.envint.2019.105363] [DOI:10.1016/j.envint.2019.105363] [PMID]
29. Song J., Wu F., Wan Y., Ma L. (2015). Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control. 50: 356-361. [DOI: 10.1016/j.foodcont. 2014.08.049] [DOI:10.1016/j.foodcont.2014.08.049]
30. Srimathi R., Priya D., Shantha K.B. (2017). Determination of melamine in India milk and dairy products by reverse phase liquid chromatography. Research Journal of Pharmacy and Technology. 10: 4269-4272. [DOI: 10.5958/0974-360X.2017.00782.X] [DOI:10.5958/0974-360X.2017.00782.X]
31. Viñas P., Campillo N., Férez-Melgarejo G., Hernández-Córdoba M. (2012). Determination of melamine and derivatives in foods by liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry and diode array detection. Analytical Letters. 45: 2508-2518. [DOI: 10.1080/00032719. 2012.694941] [DOI:10.1080/00032719.2012.694941]
32. Wang Y., Gao L., Qin D., Chen L. (2017). Analysis of melamine in milk powder by CNT-MIP with matrix solid phase dispersion and LC-MS/MS. Food Analytical Methods. 10: 1386-1396. [DOI: 10.1007/s12161-016-0705-1] [DOI:10.1007/s12161-016-0705-1]
33. Yang R., Horstman K., Penders B. (2022). Stakeholder perspectives on infant formula safety governance in China: a decade after the melamine crisis. Food, Culture and Society. 25: 70-88. [DOI: 10.1080/15528014. 2021.1884410] [DOI:10.1080/15528014.2021.1884410]
34. You J., Zhang H., Zhang H., Yu A., Xiao T., Wang Y., Song D. (2007). Determination of triazines in infant nutrient cereal-based foods by pressurized microwave-assisted extraction coupled with high-performance liquid chromatography-mass spectrometry. Journal of Chromatography B. 856: 278-284. [DOI: 10.1016/j. jchromb. 2007.06.012] [DOI:10.1016/j.jchromb.2007.06.012] [PMID]
35. Zhu H., Kannan K. (2019). Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environment International. 130: 104950. [DOI: 10.1016/j. envint.2019.104950] [DOI:10.1016/j.envint.2019.104950] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb