Volume 10, Issue 2 (June 2023)                   J. Food Qual. Hazards Control 2023, 10(2): 70-75 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chouaib N, Benhamed N, Benyettou I, Bekki A. Prevalence and Antibiotic Susceptibility Profile of Staphylococcus aureus in Commercialized Food in Oran, Algeria. J. Food Qual. Hazards Control 2023; 10 (2) :70-75
URL: http://jfqhc.ssu.ac.ir/article-1-1069-en.html
Laboratory of Biotechnology of Rhizobiums and Valorisation of Plants, University Oran1, Ahmed BenBella, Algeria , nourelhouda.chouaib@gmail.com
Abstract:   (519 Views)
Background: With regard to health-threatening infections, Staphylococcus aureus is the leading cause of polymorphic infections varying from a banal tegumentary infection to numerous lethal illnesses. Furthermore, it is the third commonest bacterial cause of food-borne infections worldwide.This study aimed to investigate contamination, prevalence, and antibiotic resistance of S. aureus isolated from several widely marketed food products (raw and processed) in the region of Oran, Algeria.
Methods: A total of 350 food samples including prepared meals (n=110), dairy products (n=42), pastry (n=78), meat and its derivatives (n=97), and other commercially available foods (egg products, sweets, and sauces) (n=23) have been randomly purchased from diverse sale outlets and screened for S. aureus strains during the period from July 2021 to September 2022. The isolation and identication of S. aureus bacteria were preformed using conventional culture and biochemical tests such as catalase, coagulase, and DNase tests. Furthermore, the strains were screened for their resistance to five different antimicrobial drugs using the agar diffusion method.
Results: The overall prevalence of S. aureus determined among the collecteded samples was 31.14% (109/350), where, pastry products harbored the highest contamination rate (43.59%), and prepared meals, the lowest contamination rate (18.18%). The strains presented a high level of resistance (58.71-39.44%) for gentamycin and oxacilin, respectively. Moreover, the lowest level of resistance was observed against erythromycin 16.51%, and about 83% of strains presented multidrug resistance.
Conclusion: The significative prevalence and the high level of multidrug resistant of S. aureus highlights the seriousness to improve food contamination prevention programs and underlines that good hygiene practices at sale outlets has a major impact on the sanitary quality of commercialized food products.

DOI: 10.18502/jfqhc.10.2.12669
Full-Text [PDF 545 kb]   (250 Downloads)    
Type of Study: Original article | Subject: Special
Received: 22/12/27 | Accepted: 23/05/28 | Published: 23/06/28

References
1. Alghizzi M.J., Alansari M., Shami A. (2021). The prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus in processed food samples in Riyadh, Saudi Arabia. Journal of Pure and Applied Microbiology. 15: 91-99. [DOI: 10.22207/JPAM.15.1.03] [DOI:10.22207/JPAM.15.1.03]
2. Arabestani M.R., Kamarehei F., Dini M., Aziz Jalilian F., Moradi A., Shokoohizadeh L. (2022). Characterization of Staphylococcus aureus isolates from pastry samples by rep-PCR and phage typing. Iranian Journal of Microbiology. 14: 76-83. [DOI: 10.18502/ijm.v14i1.8806] [DOI:10.18502/ijm.v14i1.8806] [PMID] [PMCID]
3. Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., Salamat M.K.F., Baloch Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance. 11: 1645-1658. [DOI: 10.2147/IDR.S173867] [DOI:10.2147/IDR.S173867] [PMID] [PMCID]
4. Ballah F.M., Islam S., Rana L., Ferdous F.B., Ahmed R., Pramanik P.K., Karmoker J., Levy S., Sobur A., Siddique M.P., Khatun M., Rahman M., et al. (2022). Phenotypic and genotypic detection of biofilm-forming Staphylococcus aureus from different food sources in Bangladesh. Biology. 11: 949. [DOI: 10.3390/biology11070949] [DOI:10.3390/biology11070949] [PMID] [PMCID]
5. Benhamed N., Kihal M. (2013). Phenotypic and genotypic characterization of Staphylococcus aureus agents of dairy cows'mastitis in Algeria. Journal of Applied Sciences Research. 9: 86-93.
6. Bhalla T.C., Monika., Sheetal., Savitri. (2019). International laws and food-borne illness. In: Singh R.L., Mondal S. (Editors). Food safety and human health. Academic Press, United States. pp: 319-371. [DOI: 10.1016/B978-0-12-816333-7.00012-6] [DOI:10.1016/B978-0-12-816333-7.00012-6] [PMCID]
7. Bianchi D.M., Maurella C., Lenzi C., Fornasiero M., Barbaro A., Decastelli L. (2022). Influence of season and food type on bacterial and entero-toxigenic prevalence of Staphylococcus aureus. Toxins. 14: 671. [DOI :10.3390/toxins14100671] [DOI:10.3390/toxins14100671] [PMID] [PMCID]
8. Chaalal W., Chaalal N., Bourafa N., Kihal M., Diene S.M., Rolain J.-M. (2018). Characterization of Staphylococcus aureus isolated from food products in western Algeria. Foodborne Pathogen and Diseases. 15: 353-360. [DOI: 10.1089/fpd.2017.2339] [DOI:10.1089/fpd.2017.2339] [PMID]
9. Dumitrescu O., Dauwalder O., Boisset S., Reverdy M.-É., Tristan A., Vandenesch F. (2010). Staphylococcus aureus resistance to antibiotics: key points in 2010. Médecine/Sciences. 26: 943-949. [DOI: 10.1051/medsci/20102611943]. [French with English abstract] [DOI:10.1051/medsci/20102611943] [PMID]
10. El Bayomi R.M., Ahmed H.A., Awadallah M.A.I., Mohsen R.A., Abd El-Ghafar A.E., Abdelrahman M.A. (2016). Occurrence, virulence factors, antimicrobial resistance, and genotyping of Staphylococcus aureus strains isolated from chicken products and humans. Vector Borne and Zoonotic Diseases. 16: 157-164. [DOI: 10.1089/vbz.2015.1891] [DOI:10.1089/vbz.2015.1891] [PMID]
11. European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2022). Breakpoint tables for interpretation of MICs and zone diameters. Version 1.0.
12. Gebremedhin E.Z., Ararso A.B., Borana B.M., Kelbesa K.A., Tadese N.D., Marami L.M., Sarba E.J. (2022). Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta, central Ethiopia. Veterinary Medicine International. 2022: 6544705. [DOI: 10.1155/2022/6544705] [DOI:10.1155/2022/6544705] [PMID] [PMCID]
13. Gurung R.R., Maharjan P., Chhetri G.G. (2020). Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future science OA. 6. [DOI: 10.2144/fsoa-2019-0122] [DOI:10.2144/fsoa-2019-0122] [PMID] [PMCID]
14. Haag A.F., Fitzgerald J.R., Penadés J.R. (2019). Staphylococcus aureus in animals. Microbiology spectrum. 7. [DOI: 10.1128/ microbiolspec.GPP3-0060-2019] [DOI:10.1128/microbiolspec.GPP3-0060-2019] [PMID]
15. Hennekinne J.-A. (2009). Innovative approaches to improve staphylococcal food poisoning characterization. Life Sciences [q-bio]. AgroParisTech. [French with English abstract]
16. Hennekinne J.-A., De Buyser M.-L., Dragacci S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews. 36: 815-836. [DOI: 10.1111/j.1574-6976.2011.00311. x] [DOI:10.1111/j.1574-6976.2011.00311.x] [PMID]
17. Islam M.A., Parveen S., Rahman M., Huq M., Nabi A., Khan Z.U.M., Ahmed N., Wagenaar J.A. (2019). Occurrence and characterization of methicillin resistant Staphylococcus aureus in processed raw foods and ready-to-eat foods in an urban setting of a developing country. Frontiers in Microbiology. 10: 503. [DOI: 10.3389/fmicb.2019.00503] [DOI:10.3389/fmicb.2019.00503] [PMID] [PMCID]
18. Kayili E., Sanlibaba P. (2020). Prevalence, characterization and antibiotic resistance of Staphylococcus aureus isolated from traditional cheeses in Turkey. International Journal of Food Properties. 23: 1441-1451. [DOI: 10.1080/10942912.2020.1814323] [DOI:10.1080/10942912.2020.1814323]
19. Liang T., Liang Z., Wu S., Ding Y., Wu Q., Gu B. (2023). Global prevalence of Staphylococcus aureus in food products and its relationship with the occurrence and development of diabetes mellitus. Medicine Advances. 1: 53-78. [DOI: 10.1002/med4.6] [DOI:10.1002/med4.6]
20. Mancuso G., Midiri A., Gerace E., Biondo C. (2021). Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 10: 1310. [DOI: 10.3390/pathogens10101310] [DOI:10.3390/pathogens10101310] [PMID] [PMCID]
21. Mekhloufi O.A., Chieffi D., Hammoudi A.H., Bensefia S.A., Fanelli F., Fusco V. (2021). Prevalence, enterotoxigenic potential and antimicrobial resistance of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) isolated from Algerian ready to eat foods. Toxins. 13: 835. [DOI: 10.3390/toxins13120835] [DOI:10.3390/toxins13120835] [PMID] [PMCID]
22. Mesbah A., Mashak Z., Abdolmaleki Z. (2021). A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran province, Iran. Tropical Medicine and Health. 49: 81. [DOI: 10.1186/s41182-021-00366-4] [DOI:10.1186/s41182-021-00366-4] [PMID] [PMCID]
23. Morshdy A.E.M.A., Hussein M.A., Tharwat A.E., Fakhry B.A. (2018). Prevalence of enterotoxigenic and multi-drug-resistant Staphylococcus aureus in ready to eat meat sandwiches. Slovenian Veterinary Research. 55: 367-374. [DOI: 10.26873/SVR-664-2018]
24. Naas H.T., Edarhoby R.A., Garbaj A.M., Azwai S.M., Abolghait S.K., Gammoudi F.T., Moawad A.A., Barbieri I., Eldaghayes I.M. (2019). Occurrence,characterization, and antibiogram of Staphylococcus aureus in meat, meat products, and some seafood from Libyan retail markets. Veterinary World. 12: 925-931. [DOI: 10.14202/vetworld.2019.925-931] [DOI:10.14202/vetworld.2019.925-931] [PMID] [PMCID]
25. Pondit A., Haque Z.F., Sabuj A.A.M., Khan S.R., Saha S. (2018). Characterization of Staphylococcus aureus isolated from chicken and quail eggshell. Journal of Advanced Veterinary and Animal Research. 5: 466-471. [DOI: 10.5455/ javar.2018.e300] [DOI:10.5455/javar.2018.e300] [PMID] [PMCID]
26. Raftari M., Jalilian F.A., Abdulamir A.S., Son R., Sekawi Z., Fatimah A.B. (2009). Effect of organic acids on Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat. Open Microbiology Journal. 3: 121-127. [DOI: 10.2174/ 1874285800903010121] [DOI:10.2174/1874285800903010121] [PMID] [PMCID]
27. Rezaei A., Pajohi-Alamoti M.R., Mohammadzadeh A., Mahmoodi P. (2018). Detection of gene encoding enterotoxin A in Staphylococcus aureus isolated from cream pastries. Journal of Food Quality and Hazards Control. 5: 24-28. [DOI: 10.29252/ jfqhc.5.1.24] [DOI:10.29252/jfqhc.5.1.24]
28. Rodríguez-Lázaro D., Oniciuc E.-A., García P.G., Gallego D., Fernández-Natal I., Dominguez-Gil M., Eiros-Bouzaz J.M., Wagner M., Nicolau A.I., Hernandez M. (2017). Detection and characterization of Staphylococcus aureus and methicillin-resistant S. aureus in foods confiscated in EU borders. Frontiers in Microbiology. 8: 1344. [DOI: 10.3389/fmicb.2017.01344] [DOI:10.3389/fmicb.2017.01344] [PMID] [PMCID]
29. Safarpoor Dehkordi F., Gandomi H., Akhondzadeh Basti A., Misaghi A., Rahimi E. (2017). Phenotypic and genotypic characterization of antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from hospital food. Antimicrobial Resistance and Infection Control. 6: 104. [DOI: 10.1186/s13756-017-0257-1] [DOI:10.1186/s13756-017-0257-1] [PMID] [PMCID]
30. Şanlıbaba P. (2022).Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. International Journal of Food Microbiology. 361: 109461. [DOI: 10.1016/j.ijfoodmicro. 2021.109461] [DOI:10.1016/j.ijfoodmicro.2021.109461] [PMID]
31. Seow W.-L., Mahyudin N.A., Amin-Nordin S., Radu S., Abdul-Mutalib N.A. (2021). Antimicrobial resistance of Staphylococcus aureus among cooked food and food handlers associated with their occupational information in Klang Valley, Malaysia. Food Control. 124: 107872. [DOI: 10.1016/j.foodcont.2021.107872] [DOI:10.1016/j.foodcont.2021.107872]
32. Titouche Y., Houali K., Ruiz‐Ripa L., Vingadassalon N., Nia Y., Fatihi A.,Cauquil A., Bouchez P., Bouhier L., Torres C., Hennekinne J.A. (2020). Enterotoxin genes and antimicrobial resistance in Staphylococcus aureus isolated from food products in Algeria. Journal of Applied Microbiology. 129: 1043-1052. [DOI: 10.1111/jam.14665] [DOI:10.1111/jam.14665] [PMID]
33. Willis J.A., Cheburkanov V., Chen S., Soares J.M., Kassab G., Blanco K.C., Bagnato V.S., De Figueiredo P., Yakovlev V.V. (2022). Breaking down antibiotic resistance in methicillin-resistant Staphylococcus aureus: combining antimicrobial photodynamic and antibiotic treatments. Proceedings of the National Academy of Sciences. 119: e2208378119. [DOI: 10.1073/pnas. 2208378119] [DOI:10.1073/pnas]
34. Wu G., Yuan Q., Wang L., Zhao J., Chu Z., Zhuang M., Zhang Y., Wang K., Xiao P., Liu Y., Du Z. (2018a). Epidemiology of foodborne disease outbreaks from 2011 to 2016 in Shandong province, China. Medicine. 97: e13142. [DOI:10.1097/ MD.0000000000013142] [DOI:10.1097/MD.0000000000013142] [PMID] [PMCID]
35. Wu S., Huang J., Wu Q., Zhang F., Zhang J., Lei T., Chen M., Ding Y., Xue L. (2018b). Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Frontiers in Microbiology. 9: 1263. [DOI: 10.3389/fmicb.2018. 01263] [DOI:10.3389/fmicb.2018.01263] [PMID] [PMCID]
36. Yang X., Zhang J., Yu S., Wu Q., Guo W., Guo W., Huang J., Cai S. (2016). Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail ready-to-eat foods in China. Frontiers in Microbiology. 7: 816. [DOI: 10.3389/fmicb.2016.00816] [DOI:10.3389/fmicb.2016.00816]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb