Volume 10, Issue 3 (September 2023)                   J. Food Qual. Hazards Control 2023, 10(3): 142-152 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noitubtim M, Kunanopparat T, Mingvanish W, Vongsawasdi P. The Effect of Fatty Acids and Meat Oils Combustion on PAH Formation in Smoke during Grilling Process. J. Food Qual. Hazards Control 2023; 10 (3) :142-152
URL: http://jfqhc.ssu.ac.ir/article-1-1071-en.html
Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Tungkru, Bangkok 10140, Thailand , punchira.von@kmutt.ac.th
Abstract:   (404 Views)
Background: Oil droplets from foods can cause the formation of Polycyclic Aromatic Hydrocarbons (PAHs) in smoke and contaminate grilled food. The aim of this research was to examine the effect of the number of carbon atoms, degree of double bonds, and types of fatty acids on the formation of PAHs in smoke during grilling process.
Methods: Four fatty acids consisting of palmitic acid, stearic acid, linoleic acid, and oleic acid, and three animal oils consisting of chicken skin oil, beef oil, and striped catfish oil had been studied. The smoke obtained during the combustion of fatty acids and animal oils was collected in a PUF/XAD-2/PUF absorption tube, and the analysis of 16 major PAHs was done using Gas Chromatography-Mass Spectroscopy (GC-MS). The experiments were conducted in three replicates.
Results: Linoleic acid and oleic acid generated relatively higher concentrations of PAHs in the smoke, at 48.53 and 46.81 ppm, while stearic acid and palmitic acid provided PAHs in the smoke at 6.15 and 3.87 ppm. The rank of the highest PAH concentration levels in order of decreasing in smoke included striped catfish oil, chicken skin oil, and beef loin oil, with values of 50.22, 35.07, and 33.62 ppm, respectively. A variety of fatty acids were found in animal oils, but some fatty acids, such as arachidic acid (20:0), mead acid (20:3), behenic acid (22:0), erucic acid (22:1), cervonic acid (DHA) (22:6), lignoceric acid (24:0), and nervonic acid (24:1), were not found in chicken skin oil or beef oil. Fatty acids in the striped catfish oil had longer carbon chains (20:0, 20:3, 22:0, 22:1, 22:6, 24:0, 24:1) compared to other animal oils and a higher degree of double bonds, thus giving a higher PAHs concentration.
Conclusion: It can be concluded that PAH concentration present in the smoke of animal oils depends on the number of carbon atoms, the degree of double bonds in the molecules, and the types of fatty acids.

DOI: 10.18502/jfqhc.10.3.13645
Full-Text [PDF 933 kb]   (176 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/02/08 | Accepted: 23/08/30 | Published: 23/09/30

References
1. Alomirah H., Al-Zenki S., Al-Hooti S., Zaghloul S., Sawaya W., Ahmed N., Kannan K. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 22: 2028-2035. [DOI: 10.1016/j.foodcont.2011.05.024] [DOI:10.1016/j.foodcont.2011.05.024]
2. Babaoglu A.S., Karakaya M., Öz F. (2017). Formation of polycyclic aromatic hydrocarbons in beef and lamb kokorec: effects of different animal fats. International Journal of Food Properties. 20: 1960-1970. [DOI: 10.1080/10942912.2016.1225761] [DOI:10.1080/10942912.2016.1225761]
3. Carlson J., Wysoczanski A., Voigtman E. (2014). Limits of quantitation - Yet another suggestion. Spectrochimica Acta Part B: Atomic Spectroscopy. 96: 69-73. [DOI: 10.1016/j.sab.2014.03.012] [DOI:10.1016/j.sab.2014.03.012]
4. Chen B.H., Chen Y.C. (2001). Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids. Journal of Agricultural and Food Chemistry. 49: 5238-5243. [DOI: 10.1021/jf0106906] [DOI:10.1021/jf0106906] [PMID]
5. Chen Y.C., Chen B.-H. (2003). Determination of polycyclic aromatic hydrocarbons in fumes from fried chicken legs. Journal of Agricultural and Food Chemistry. 51: 4162-4167. [DOI: 10.1021/jf020856i] [DOI:10.1021/jf020856i] [PMID]
6. Dandajeh H.A., Ladommatos N., Hellier P., Eveleigh A. (2017). Effects of unsaturation of C2 and C3 hydrocarbons on the formation of PAHs and on the toxicity of soot particles. Fuel. 194: 306-320. [DOI: 10.1016/j.fuel.2017.01.015] [DOI:10.1016/j.fuel.2017.01.015]
7. Dandajeh H.A., Ladommatos N., Hellier P., Eveleigh A. (2018). Influence of carbon number of C1-C7 hydrocarbons on PAH formation. Fuel. 228: 140-151. [DOI: 10.1016/j.fuel.2018.04. 133] [DOI:10.1016/j.fuel.2018.04.133]
8. Duedahl-Olesen L., Ionas A.C. (2021). Formation and mitigation of PAHs in barbecued meat - a review. Critical Reviews in Food Science and Nutrition. 62: 3553-3568. [DOI: 10.1080/10408398. 2020.1867056] [DOI:10.1080/10408398.2020.1867056] [PMID]
9. Environmental Protection Agency (EPA). (1998). Locating and estimating air emission from sources of polycyclic organic matters. EPA 454/R-98-14. United States environmental protection agency, Washington, DC. URL: https://www3.epa. gov/ttnchie1/le/pompta.pdf.
10. Environmental Protection Agency (EPA). (1999). Compendium Method TO-13A Determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS). EPA/625/R-96/010b. United States environmental protection agency, Washington, DC. URL: https://www.epa.gov/sites/default/files/ 2019-11/documents/to-13arr.pdf.
11. European Commission (EC). (2011). Commission regulation (EU) No 835/2011 of 19 August 2011 amending regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Official Journal of the European :union:. L 215: 4-8. URL: https://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=OJ:L:2011:215:0004:0008:En:PDF.
12. European Food Safety Authority (EFSA). (2008). Scientific opinion of the panel on contaminants in the food chain on a request from the European commission on polycyclic aromatic hydrocarbons in food. The EFSA Journal. 724: 1-114. URL: https://efsa. onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2008.724. [DOI:10.2903/j.efsa.2008.724]
13. Ewa B., Danuta M.-Š. (2017). Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. Journal of Applied Genetics. 58: 321-323. [DOI: 10.1007/s13353-016-0380-3] [DOI:10.1007/s13353-016-0380-3] [PMID] [PMCID]
14. Farhadian A., Jinap S., Abas F., Sakar Z.I. (2010). Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control. 21: 606-610. [DOI: 10.1016/j.foodcont.2009.09.002] [DOI:10.1016/j.foodcont.2009.09.002]
15. Farhadian A., Jinap S., Hanifah H.N., Zaidul I.S. (2011). Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chemistry. 124: 141-146. [DOI: 10.1016/j.foodchem.2010.05.116] [DOI:10.1016/j.foodchem.2010.05.116]
16. Harrington K.J., D'Arcy-Evans C. (1985). A comparison of conventional and in situ methods of transesterification of seed oil from a series of sunflower cultivars. Journal of the American Oil Chemists Society. 62: 1009-1013. [DOI: 10.1007/BF02935703] [DOI:10.1007/BF02935703]
17. Hur S.J., Yoon Y., Jo C., Jeong J.Y., Lee K.T. (2019). Effect of dietary red meat on colorectal cancer risk-a review. Comprehensive Reviews in Food Science and Food Safety. 18: 1812-1824. [DOI: 10.1111/1541-4337.12501] [DOI:10.1111/1541-4337.12501] [PMID]
18. International Organization for Standardization (ISO) 661. (2003). Animal and vegetable fats and oils - preparation of test sample. 3rd edition. ISO 661:2003. URL: https://www.iso.org/standard/ 38145.html?browse=tc.
19. Kao T.H., Chen S., Huang C.W., Chen C.J., Chen B.H. (2014). Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food and Chemical Toxicology. 71: 149-158. [DOI: 10.1016/ j.fct.2014.05.033] [DOI:10.1016/j.fct.2014.05.033] [PMID]
20. Lee J.-G., Kim S.-Y., Moon J.-S., Kim S.-H., Kang D.-H., Yoon H.-J. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry. 199: 632-638. [DOI: 10.1016/j.foodchem.2015.12.017] [DOI:10.1016/j.foodchem.2015.12.017] [PMID]
21. Llamas A., Al-Lal A.-M., García-Martínez M.-J., Ortega M.F., Llamas J.F., Lapuerta M., Canoira L. (2017). Polycyclic aromatic hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: quantification, statistical analysis and mechanisms of formation. Science of The Total Environment. 586: 446-456. [DOI: 10.1016/j.scitotenv.2017. 01.180] [DOI:10.1016/j.scitotenv.2017.01.180] [PMID]
22. Lomsugarit S.D., Katsuwon J., Jeyashoke N., Krisnangkura K. (2001). An empirical approach for estimating the equivalent chain length of fatty acid methyl esters in multistep temperature-programmed gas chromatography. Journal of Chromatographic Science. 39: 468-472. [DOI: 10.1093/chromsci/39.11.468] [DOI:10.1093/chromsci/39.11.468] [PMID]
23. McClement D.J., Decker E.A. (2017). Lipids. In: Parkin K.L., Damodaran S. (Editors). Fennema's food chemistry. CRC Press, United States. pp. 171-233.
24. Min S., Patra J.K., Shin H.-S. (2018). Factors influencing inhibition of eight polycyclic aromatic hydrocarbons in heated meat model system. Food Chemistry. 239: 993-1000. [DOI: 10.1016/j. foodchem.2017.07.020] [DOI:10.1016/j.foodchem.2017.07.020] [PMID]
25. Nie W., Cai K., Li Y., Tu Z., Hu B., Zhou C., Chen C., Jiang S. (2019). Study of polycyclic aromatic hydrocarbons generated from fatty acids by a model system. Journal of the Science of Food and Agriculture. 99: 3548-3554. [DOI: 10.1002/jsfa.9575] [DOI:10.1002/jsfa.9575] [PMID]
26. Prathomtong P., Panchatee C., Kunanopparat T., Srichumpuang W., Nopharatana M. (2016). Effects of charcoal composition and oil droplet combustion on the polycyclic aromatic hydrocarbon content of smoke during the grilling process. International Food Research Journal. 23: 1372-1378.
27. Wongmaneepratip W., Vangnai K. (2017). Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken. Food Control. 79: 119-125. [DOI: 10.1016/j.foodcont.2017.03.029] [DOI:10.1016/j.foodcont.2017.03.029]
28. Wood J.D., Enser M., Fisher A.V., Nute G.R,. Sheard P.R., Richardson R.I., Hughes S.I., Whittington F.M. (2008). Fat deposition, fatty acid composition and meat quality: a review. Meat Science. 78: 343-358. [DOI: 10.1016/j.meatsci. 2007.07.019] [DOI:10.1016/j.meatsci.2007.07.019] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb