1. Akhtar H.M.S., Riaz A., Hamed Y.S., Abdin M., Chen G., Wan P., Zeng X. (2018). Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. International Journal of Biological Macromolecules. 118: 469-477. [DOI: 10.1016/j.ijbiomac. 2018.06.090] [
DOI:10.1016/j.ijbiomac.2018.06.090] [
PMID]
2. Araya J., Esquivel M., Jimenez G., Navia D., Poveda L. (2022). Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. Journal of Plastic Film and Sheeting. 38: 46-71. [DOI: 10.1177/87560879211023882] [
DOI:10.1177/87560879211023882]
3. American Society of Testing and Materials (ASTM) D882-02. (2002). Standard test method for tensile properties of thin plastic sheeting. URL: https://www.astm.org/d0882-02.html
4. Azarifar M., Ghanbarzadeh B., Sowti Khiabani M., Akhondzadeh Basti A., Abdulkhani A., Noshirvani N., Hosseini M. (2019). The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohydrate Polymers. 208: 457-468. [DOI: 10.1016/j.carbpol.2019.01.005] [
DOI:10.1016/j.carbpol.2019.01.005] [
PMID]
5. Bahrami A., Fattahi R. (2021). Biodegradable carboxymethyl cellulose-polyvinyl alcohol composite incorporated with Glycyrrhiza Glabra L. essential oil: physicochemical and antibacterial features. Food Science and Nutrition. 9: 4974-4985. [DOI: 10.1002/fsn3.2449] [
DOI:10.1002/fsn3.2449] [
PMID] [
PMCID]
6. Benavides S., Villalobos-Carvajal R., Reyes J.E. (2012). Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering. 110: 232-239. [DOI: 10.1016/ j.jfoodeng.2011.05.023] [
DOI:10.1016/j.jfoodeng.2011.05.023]
7. Bertan L.C., Tanada-Palmu P.S., Siani A.C., Grosso C.R.F. (2005). Effect of fatty acids and 'Brazilian elemi'on composite films based on gelatin. Food Hydrocolloids. 19: 73-82. [DOI: 10.1016/j.foodhyd.2004.04.017] [
DOI:10.1016/j.foodhyd.2004.04.017]
8. Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76: 965-977. [DOI: 10.1016/j.talanta.2008.05.019] [
DOI:10.1016/j.talanta.2008.05.019] [
PMID]
9. Cascant M.M., Sisouane M., Tahiri S., EL Krati M., Cervera M.L., Garrigues S., De La Guardia M. (2016). Determination of total phenolic compounds in compost by infrared spectroscopy. Talanta. 153: 360-365. [DOI: 10.1016/j.talanta.2016.03.020] [
DOI:10.1016/j.talanta.2016.03.020] [
PMID]
10. Dashipour A., Khaksar R., Hosseini H., Shojaee-Aliabadi S., Ghanati K. (2014). Physical, antioxidant and antimicrobial characteristics of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan Journal of Research in Medical Sciences. 16: 34-42.
11. Ebrahimi B., Ghanbarzadeh B., Homayouni Rad A., Hemmati S., Moludi J., Arab K., Karimi S. (2022). Structural and physicochemical characterization of a novel water-soluble polysaccharide isolated from Dorema ammoniacum. Polymer Bulletin. 79: 9589-9608. [DOI: 10.1007/s00289-021-03952-y] [
DOI:10.1007/s00289-021-03952-y]
12. Ebrahimi B., Homayouni Rad A., Ghanbarzadeh B., Torbati M., Falcone P.M. (2020). The emulsifying and foaming properties of Amuniacum gum (Dorema ammoniacum) in comparison with gum Arabic. Food Science and Nutrition. 8: 3716-3730. [DOI: 10.1002/fsn3.1658] [
DOI:10.1002/fsn3.1658] [
PMID] [
PMCID]
13. Ebrahimi B., Mohammadi R., Rouhi M., Mortazavian A.M., Shojaee-Aliabadi S., Koushki M.R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT-Food Science and Technology. 87: 54-60. [DOI: 10.1016/j.lwt.2017.08.066] [
DOI:10.1016/j.lwt.2017.08.066]
14. Ghanbarzadeh B., Almasi H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules. 48: 44-49. [DOI: 10.1016/j.ijbiomac.2010.09.014] [
DOI:10.1016/j.ijbiomac.2010.09.014] [
PMID]
15. Gülçin Ì., Şat İ.G., Beydemir Ş., Elmastaş M., Küfrevioǧlu Ö.İ. (2004). Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry. 87: 393-400. [DOI: 10.1016/j. foodchem.2003.12.008] [
DOI:10.1016/j.foodchem.2003.12.008]
16. Guo F., Chen Q., Liang Q., Zhang M., Chen W., Chen H., Yun Y., Zhong Q., Chen W. (2021). Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Frontiers in Microbiology. 12: 562094. [DOI: 10.3389/ fmicb.2021.562094] [
DOI:10.3389/fmicb.2021.562094]
17. Hoque S., Benjakul S., Prodpran T. (2011). Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids. 25: 1085-1097. [DOI: 10.1016/j.foodhyd.2010.10.005] [
DOI:10.1016/j.foodhyd.2010.10.005]
18. Hosseini M.H., Razavi S.H., Mousavi M.A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation. 33: 727-743. [DOI: 10.1111/j.1745-4549.2008.00307.x] [
DOI:10.1111/j.1745-4549.2008.00307.x]
19. Ju J., Xie Y., Guo Y., Cheng Y., Qian H., Yao W. (2019). Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition. 59: 2467-2480. [DOI: 10.1080/10408398.2018.1456402] [
DOI:10.1080/10408398.2018.1456402] [
PMID]
20. Kadzińska J., Bryś J., Ostrowska-Ligęza E., Estéve M., Janowicz M. (2020). Influence of vegetable oils addition on the selected physical properties of apple-sodium alginate edible films. Polymer Bulletin. 77: 883-900. [DOI: 10.1007/s00289-019-02777-0] [
DOI:10.1007/s00289-019-02777-0]
21. Lin Y.T., Labbe R.G., Shetty K. (2004). Inhibition of Listeria monocytogenes in fish and meat systems by use of oregano and cranberry phytochemical synergies. Applied and Environmental Microbiology. 70: 5672-5678. [DOI: 10.1128/AEM.70.9.5672-5678.2004] [
DOI:10.1128/AEM.70.9.5672-5678.2004] [
PMID] [
PMCID]
22. Lu X., Wang J., Al-Qadiri H.M., Ross C.F., Powers J.R., Tang J., Rasco B.A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry. 129: 637-644. [DOI: 10.1016/j.foodchem.2011.04.105] [
DOI:10.1016/j.foodchem.2011.04.105] [
PMID]
23. Ma Q., Zhang Y., Critzer F., Davidson P.M., Zivanovic S., Zhong Q. (2016). Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids. 52: 533-542. [DOI: 10.1016/j.foodhyd.2015.07.036] [
DOI:10.1016/j.foodhyd.2015.07.036]
24. Malanovic N., Lohner K. (2016). Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1858: 936-946. [DOI: 10.1016/j.bbamem.2015.11.004] [
DOI:10.1016/j.bbamem.2015.11.004] [
PMID]
25. Maleki M., Mohsenzadeh M. (2022). Optimization of a biodegradable packaging film based on carboxymethyl cellulose and Persian gum containing titanium dioxide nanoparticles and Foeniculum vulgare essential oil using response surface methodology. Journal of Food Processing and Preservation. 46: e16424. [DOI: 10.1111/jfpp.16424] [
DOI:10.1111/jfpp.16424]
26. Matsuura M. (2013). Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Frontiers in Immunology. 4: 109. [DOI: 10.3389/fimmu.2013.00109] [
DOI:10.3389/fimmu.2013.00109] [
PMID] [
PMCID]
27. Nisar T., Wang Z.-C., Yang X., Tian Y., Iqbal M., Guo Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules. 106: 670-680. [DOI: 10.1016/j.ijbiomac. 2017.08.068] [
DOI:10.1016/j.ijbiomac.2017.08.068] [
PMID]
28. Pereda M., Ponce A.G., Marcovich N.E., Ruseckaite R.A., Martucci J.F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25: 1372-1381. [DOI: 10.1016/j.foodhyd.2011.01.001]. [
DOI:10.1016/j.foodhyd.2011.01.001]
29. Radovic M., Adamovic T., Pavlovic J., Rusmirovic J., Tadic V., Brankovic Z., Ivanovic J. (2019). Supercritical CO2 impregnation of gelatin-chitosan films with clove essential oil and characterization thereof. Chemical Industry and Chemical Engineering Quarterly. 25: 119-130. [DOI: 10.2298/ CICEQ180323025R] [
DOI:10.2298/CICEQ180323025R]
30. Raeisi M., Tajik H., Aliakbarlu J., Mirhosseini S.H., Hosseini S.M.H. (2015). Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Science and Technology. 64: 898-904. [DOI: 10.1016/j.lwt.2015.06.010] [
DOI:10.1016/j.lwt.2015.06.010]
31. Salama H.E., Abdel Aziz M.S., Sabaa M.W. (2019). Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil. International Journal of Biological Macromolecules. 139: 1162-1167. [DOI: 10.1016/j.ijbiomac.2019.08.104] [
DOI:10.1016/j.ijbiomac.2019.08.104] [
PMID]
32. Shahbazi Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. International Journal of Biological Macromolecules. 99: 746-753. [DOI: 10.1016/j.ijbiomac. 2017.03.065] [
DOI:10.1016/j.ijbiomac.2017.03.065] [
PMID]
33. Vargas M., Albors A., Chiralt A., González-Martínez C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloids. 23: 536-547. [DOI: 10.1016/j.foodhyd. 2008.02.009] [
DOI:10.1016/j.foodhyd.2008.02.009]
34. Vasconcelos N.G., Croda J., Simionatto S. (2018). Antibacterial mechanisms of cinnamon and its constituents: a review. Microbial Pathogenesis. 120: 198-203. [DOI: 10.1016/j. micpath.2018.04.036] [
DOI:10.1016/j.micpath.2018.04.036] [
PMID]
35. Vlachos N., Skopelitis Y., Psaroudaki M., Konstantinidou V., Chatzilazarou A., Tegou E. (2006). Applications of fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta. 573-574: 459-465. [DOI: 10.1016/j.aca.2006. 05.034] [
DOI:10.1016/j.aca.2006.05.034] [
PMID]
36. Walid Y., Malgorzata N., Katarzyna R., Piotr B., Ewa O.-L., Izabela B., Wissem A.-W., Majdi H., Slim J., Karima H.-N., Dorota W.-R., Moufida S.-T. (2022). Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin-chitosan film using mixture design. Journal of Food Processing and Preservation. 46: e16059. [DOI: 10.1111/jfpp.16059] [
DOI:10.1111/jfpp.16059]
37. Yeddes W., Djebali K., Wannes W.A., Horchani-Naifer K., Hammami M., Younes I., Tounsi M.S. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: optimized formulation using mixture design and response surface methodology. International Journal of Biological Macromolecules. 154: 92-103. [DOI: 10.1016/j.ijbiomac.2020.03.092] [
DOI:10.1016/j.ijbiomac.2020.03.092] [
PMID]
38. Yuen S.-N., Choi S.-M., Phillips D.L., Ma C.-Y. (2009). Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides. Food Chemistry. 114: 1091-1098. [DOI: 10.1016/j.foodchem. 2008.10.053] [
DOI:10.1016/j.foodchem.2008.10.053]
39. Zhao F., Guo Y., Zhou X., Shi W., Yu G. (2020). Materials for solar-powered water evaporation. Nature Reviews Materials. 5: 388-401. [DOI: 10.1038/s41578-020-0182-4] [
DOI:10.1038/s41578-020-0182-4]