1. Aalipour F., Mirlohi M., Jalali M. (2013). Prevalence of antibiotic residues in commercial milk and its variation by season and thermal processing methods. International Journal of Environmental Health Engineering. 2: 41. [DOI: 10.4103/2277-9183.122429] [
DOI:10.4103/2277-9183.122429]
2. Alimohammadi M., Ghale Askari S., Morgan Azghadi N., Taghavimanesh V., Mohammadimoghadam T., Bidkhori M., Gholizade A., Rezvani R., Mohammadi A.A. (2020). Antibiotic residues in the raw and pasteurized milk produced in northeastern Iran examined by the four-plate test (FPT) method. International Journal of Food Properties. 23: 1248-1255. [DOI: 10.1080/10942912.2020.1800032] [
DOI:10.1080/10942912.2020.1800032]
3. Beck K.L., Coad J. (2017). Dairy product (calcium) consumption and iron nutrition. In: Watson R.R., Collier R.J., Preedy V.R. (Editors). Nutrients in dairy and their implications on health and disease. Academic Press, Cambridge, Massachusetts, United States. pp: 149-160. [DOI: 10.1016/B978-0-12-809762-5.00012-7] [
DOI:10.1016/B978-0-12-809762-5.00012-7]
4. Chiesa L.M., DeCastelli L., Nobile M., Martucci F., Mosconi G., Fontana M., Castrica M., Arioli F., Panseri S. (2020). Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT. 131: 109783. [DOI: 10.1016/j.lwt.2020.109783] [
DOI:10.1016/j.lwt.2020.109783]
5. Dabbagh Moghaddam A., Tayebi L., Falahatpisheh H., Mahmoudian M., Kowsari N., Akbarein H., Sabzikar A. (2014). Evaluation of the tetracycline residues in pasteurized milks distributed in Tehran by HPLC method. Scientific and Research Journal of Army University of Medical Sciences. 11: 318-323. [Iranian with English abstract]
6. Du B., Wen F., Zhang Y., Zheng N., Li S., Li F., Wang J. (2019). Presence of tetracyclines, quinolones, lincomycin and streptomycin in milk. Food Control. 100: 171-175. [DOI: 10.1016/j.foodcont.2019.01.005] [
DOI:10.1016/j.foodcont.2019.01.005]
7. Kabrite S., Bou-Mitri C., EI Hayek Fares J., Hassan H.F., Matar Boumosleh J. (2019). Identification and dietary exposure assessment of tetracycline and penicillin residues in fluid milk, yogurt, and labneh: a cross-sectional study in Lebanon. Veterinary world. 12: 527-534. [DOI: 10.14202/vetworld.2019. 527-534] [
DOI:10.14202/vetworld.2019.527-534] [
PMID] [
PMCID]
8. Kubicová Ľ., Predanocyová K., Kádeková Z. (2019). The importance of milk and dairy products consumption as a part of rational nutrition. Potravinarstvo Slovak Journal of Food Sciences. 13: 234-243. [DOI: 10.5219/1050] [
DOI:10.5219/1050]
9. Kurjogi M., Issa Mohammad Y.H., Alghamdi S., Abdelrahman M., Satapute P., Jogaiah S. (2019). Detection and determination of stability of the antibiotic residues in cow's milk. Plos One. 14: e0223475. [DOI: 10.1371/journal.pone.0223475] [
DOI:10.1371/journal.pone.0223475] [
PMID] [
PMCID]
10. Liu P., Wu Z., Cannizzo F.T., Mantegna S., Cravotto G. (2022). Removal of antibiotics from milk via ozonation in a vortex reactor. Journal of Hazardous Materials. 440: 129642. [DOI: 10.1016/j.jhazmat.2022.129642] [
DOI:10.1016/j.jhazmat.2022.129642] [
PMID]
11. Mahmoudi R., Amini K., Vahabzade M., Mir H., Vagef R. (2014a). Antibiotic residues in raw and pasteurized milk, Iran. Journal of Research and Health. 4: 884-889.
12. Mahmoudi R., Norian R., Ghajarbeygi P. (2014b). Survey of antibiotic residues in raw milk samples in Qazvin (2012). Journal of Inflammatory Diseases. 18: 45-52. [Iranian with English abstract]
13. Meklati F.R., Panara A., Hadef A., Meribai A., Ben-Mahdi M.H., Dasenaki M.E., Thomaidis N.S. (2022). Comparative assessment of antibiotic residues using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and a rapid screening test in raw milk collected from the North-Central Algerian dairies. Toxics. 10: 19. [DOI: 10.3390/toxics10010019] [
DOI:10.3390/toxics10010019] [
PMID] [
PMCID]
14. Mesgari Abbasi M., Babaei H., Ansarin M., Nourdadgar A.-O.-S., Nemati M. (2011). Simultaneous determination of tetracyclines residues in bovine milk samples by solid phase extraction and HPLC-FL method. Advanced Pharmaceutical Bulletin. 1: 34-39. [DOI: 10.5681/apb.2011.005]
15. Mohammadzadeh Moghadam M., Amiri M., Ramezani Awal Riabi H., Ramezani Awal Riabi H. (2016). Evaluation of antibiotic residues in pasteurized and raw milk distributed in the South of Khorasan-e Razavi province, Iran. Journal of Clinical and Diagnostic Research. 10: FC31-FC35. [DOI: 10.7860/JCDR/2016/21034.9034] [
DOI:10.7860/JCDR/2016/21034.9034] [
PMID] [
PMCID]
16. Motarjemi Y., Moy G.G., Jooste P.J., Anelich L.E. (2014). Milk and dairy products. In: Motarjemi Y., Lelieveld H. (Editors). Food safety management: a practical guide for the food industry. Academic Press, Cambridge, Massachusetts, United States. pp: 83-117. [DOI: 10.1016/B978-0-12-381504-0.00005-6] [
DOI:10.1016/B978-0-12-381504-0.00005-6]
17. Moudgil P., Bedi J.S., Aulakh R.S., Gill J.P.S. (2019a). Antibiotic residues and mycotoxins in raw milk in Punjab (India): a rising concern for food safety. Journal of Food Science and Technology. 56: 5146-5151. [DOI: 10.1007/s13197-019-03963-8] [
DOI:10.1007/s13197-019-03963-8] [
PMID] [
PMCID]
18. Moudgil P., Bedi J.S., Aulakh R.S., Gill J.P.S., Kumar A. (2019b). Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Analytical Methods. 12: 338-346. [DOI: 10.1007/s12161-018-1365-0] [
DOI:10.1007/s12161-018-1365-0]
19. Pirsaheb M., Khamotian R., Dargahi A., Torabi S., Ghasem Zadeh A. (2014). The survey of antibiotic residues of milk in Iran. Journal of Jiroft University of Medical Sciences. 1: 94-105. [Iranian with English abstract]
20. Rassouli A., Abdolmaleki Z., Bokaee S., Kamkar A., Shams G.H.R. (2010). A cross-sectional study on oxytetracycline and tetracycline residues in pasteurized milk supplied in Tehran by an HPLC method. International Journal of Veterinary Research. 4: 1-3.
21. Ray P.R., Sen C. (2019). Biochemical residues in milk and milk products-a review. Indian Journal of Animal Health. 58: 145-152. [
DOI:10.36062/ijah.58.2SPL.2019.145-152]
22. Roba H.M. (2023). Review on antimicrobial residue occurrence in cow milk and its public health importance in Ethiopia. Archives of Nutrition and Public Health. 5.
23. Schmerold I., Van Geijlswijk I., Gehring R. (2023). European regulations on the use of antibiotics in veterinary medicine. European Journal of Pharmaceutical Sciences. 189: 106473. [DOI: 10.1016/j.ejps.2023.106473] [
DOI:10.1016/j.ejps.2023.106473] [
PMID]
24. Sharifi S., Sohrabvandi S., Mofid V., Khanniri E., Khorshidian N., Esmaeili S., Shadnoush M., Hadizadeh M., Mortazavian A.M. (2021). Determination of lead level in pasteurized milk and dairy products consumed in Tehran and evaluation of associated health risk. International Journal of Cancer Management. 14: e115541. [DOI: 10.5812/ijcm.115541] [
DOI:10.5812/ijcm.115541]
25. Virto M., Santamarina-García G., Amores G., Hernández I. (2022). Antibiotics in dairy production: where is the problem?. Dairy. 3: 541-564. [DOI: 10.3390/dairy3030039] [
DOI:10.3390/dairy3030039]
26. Yao S., Shi Z., Cao P., Zhang L., Tang Y., Zhou P., Liu Z. (2023). A global survey of organophosphate esters and their metabolites in milk: occurrence and dietary intake via milk consumption. Journal of Hazardous Materials. 442: 130080. [DOI: 10.1016/j.jhazmat.2022.130080] [
DOI:10.1016/j.jhazmat.2022.130080] [
PMID]
27. Zeina K., Pamela A.K., Fawwak S. (2013). Quantification of antibiotic residues and determination of antimicrobial resistance profiles of microorganisms isolated from bovine milk in Lebanon. Food and Nutrition Sciences. 4: 1-9. [DOI: 10.4236/fns.2013.47A001] [
DOI:10.4236/fns.2013.47A001]
28. Zhang X., Tang X., Yu J., Ye H., Zhao L. (2023). A novel carbon dots synthesized based on easily accessible biological matrix for the detection of enrofloxacin residues. Microchemical Journal. 190: 108690. [DOI: 10.1016/j.microc.2023.108690] [
DOI:10.1016/j.microc.2023.108690]