Volume 11, Issue 2 (June 2024)                   J. Food Qual. Hazards Control 2024, 11(2): 135-148 | Back to browse issues page

Ethics code: 0000


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Iwe M, Anya P, Ubbor S, Agiriga A, Okoro C. Modelling the Color and Microbial Properties of Canned Ngu by Response Surface Method. J. Food Qual. Hazards Control 2024; 11 (2) :135-148
URL: http://jfqhc.ssu.ac.ir/article-1-1116-en.html
Department of Food Science and Technology, Federal University Oye-Ekiti, Nigeria , favoured4sure@gmail.com
Abstract:   (207 Views)
Background: Ngu is an African salad dressing used to improve the stability and shelf life of African salad. The aim of this study was to produce canned Ngu using three stabilizers at various concentrations, constant sterilization temperature, and varied sterilization times.
Methods: Ngu (50 L) was prepared from potash using three stabilizers at various concentrations. A three-level factorial response surface design was applied to generate the experimental runs for the production of the canned Ngu. The Ngu emulsion was filled inside 250 ml bottle jars, sterilized at 121 oC at various times, and canned. The color of the canned Ngu was evaluated using the Comission Internationale de l'Eclairage color scale, and its microbiological attributes, Total Viable Count (TVC) and Total Fungal Count was determined with standard procedures. The effect of the stabilizers (Akparata, Ofo, and Carboxyl Methyl Cellulose), stabilizer concentration, and sterilization time on the color and microbial properties of the canned Ngu was assessed. The Statistical Software Design Expert version 8.0.7 was utilized for response surface analysis and derivation of model equation.
Results: Increase in sterilization time increased the a* value and decreased the b* value of the canned Ngu. The quadratic effect of stabilizer, stabilizer concentration, and sterilization time indicated that the alteration of stabilizer from Carboxyl Methyl Cellulose to Akparata and then to Ofo increased the L* value, of the canned Ngu. An increase in the quadratic effect of stabilizer concentration increased the a* value but decreased the L* and b* values of the canned Ngu. However, the TVC and b* value of the canned Ngu reduced as the quadratic effects of the sterilization time increased.
Conclusion: Total Fungal Count and TVC value of all the canned Ngu samples were within acceptable limits, ensuring the samples safe for human consumption.

DOI: 10.18502/jfqhc.11.2.15652
Full-Text [PDF 1766 kb]   (177 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/10/23 | Accepted: 24/06/03 | Published: 24/06/30

References
1. Adheeb-Usaid A.S., Premkumar J., Ranganathan T.V. (2014). Emulsion and it's applications in food processing- a review. International Journal of Engineering Research and Applications. 4: 241-248.
2. Alakali J.S., Okonkwo T.M., Ordye E.M. (2008). Effect of stabilizers on the physico-chemical and sensory attributes of thermized yoghurt. African Journal of Biotechnology. 7: 158-163.
3. Amadi L.O., Nwankwo C.C. (2021). Culture-dependent evaluation of microbial and proximate composition of ready-to-eat (RTE) African salad sold at Nkpolu-Oroworukwo Ultra-Modern Market (Mile 3, Diobu), Port Harcourt, Rivers State, Nigeria. South Asian Journal of Research in Microbiology. 9: 32-40. [DOI: 10.9734/sajrm/2021/ v9i330211] [DOI:10.9734/sajrm/2021/v9i330211]
4. Athanasaki D.E., Georgiou S.D., Stylianou S. (2024). New approaches on composite designs for response surface methodology. Plos One. 19: e0301049. [DOI: 10.1371/ journal.pone.0301049] [DOI:10.1371/journal.pone.0301049] [PMID] [PMCID]
5. Blattner P. (2020). Present and future activities of the International Commission on Illumination (CIE). Light and Engineering. 28: 4-8. [DOI: 10.33383/2020-036] [DOI:10.33383/2020-036]
6. Breig S.J.M, Luti K.J.K. (2021). Response surface methodology: a review on its applications and challenges in microbial cultures. Materials Today: Proceedings. 42: 2277-2284 [DOI: 10.1016/J.MATPR.2020.12.316] [DOI:10.1016/j.matpr.2020.12.316]
7. Dey S., Nagababu B.H. (2022). Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chemistry Advances.1: 100019. [DOI: 10. 1016/j.focha.2022.100019] [DOI:10.1016/j.focha.2022.100019]
8. Feng C.H. (2022). Quality evaluation and mathematical modelling approach to estimate the growth parameters of total viable count in sausages with different casings. Foods. 11: 634. [DOI: 10.3390/foods11050634] [DOI:10.3390/foods11050634] [PMID] [PMCID]
9. Hasan M.R., Hossain M.M., Islam M.S., Sunny A.R., Ferdus J., Chowdhury M.Z.A., Mazed M.A., Al Shiam S.A., Mojumder M.A.N., Rahman M.A., Hamid S.M.A., Sultana A. (2023). Seasonal variation of quality and the total viable count of lean and fatty fish. Egyptian Journal of Aquatic Biology and Fisheries. 27: 1337-1356. [DOI: 10.21608/ejabf.2023. 324732] [DOI:10.21608/ejabf.2023.324732]
10. Hu W., Wei S., Chen H., Tang M. (2020). Effect of sterilization on arbuscular mycorrhizal fungal activity and soil nutrient status. Journal of Soil Science and Plant Nutrition. 20: 684-689. [DOI: 10.1007/s42729-019-00156-2] [DOI:10.1007/s42729-019-00156-2]
11. Jia-hui Z., Bei-lei C., Qian W., Chun-xia S., Nan Y. (2020). Study on the salad dressing based on natural oil body-sodium alginate. Science and Technology of Food. 41: 7-14. [DOI: 10.13386/j.issn1002-0306.2020.11.002]
12. Kamsiati E., Herawati H. (2021). Effect of stabilizer type and concentration on the characteristics of black pepper sauce. IOP Conference Series: Earth and Environmental Science. 653: 012104. [DOI: 10.1088/1755-1315/653/1/012104] [DOI:10.1088/1755-1315/653/1/012104]
13. Krnjaja V.S., Stanojković A., Petrović T.S., Mandić V., Bijelić Z., Radović Č., Delic N. (2021). Fungal contamination of pig farm feeds. Biotechnology in Animal Husbandry. 37: 139-147. [DOI: 10.2298/BAH2102139K] [DOI:10.2298/BAH2102139K]
14. Kumar A. (2020). Food poisoning: causes, precautions, diagnosis and treatment: a brief review. World Journal of Biology and Biotechnology. 5: 33-36. [DOI: 10.33865/wjb.005.01.0287] [DOI:10.33865/wjb.005.01.0287]
15. Kumar A. (2019). Food preservation: traditional and modern techniques. Acta Scientific Nutritional Health. 3: 45-49. [DOI: 10.31080/ASNH.2019.03.0529] [DOI:10.31080/ASNH.2019.03.0529]
16. Lawrence K., Chinenye F., Kiwu L.C., Bartholomew D.C., Obite C.P., Chikereuba A.F. (2021). Evaluation and comparison of three classes of central composite designs. Asian Journal of Probability and Statistics. 13: 31-47. [DOI: 10.9734/ajpas/ 2021/v13i230304] [DOI:10.9734/ajpas/2021/v13i230304]
17. Lazárková Z., Buňka F., Buňková L., Holáň F., Kráčmar S., Hrabe J. (2011). The effect of different heat sterilization regimes on the quality of canned processed cheese. Journal of Food Process Engineering. 34: 1860-1878. [DOI: 10.1111/J.1745-4530.2009.00376.X] [DOI:10.1111/j.1745-4530.2009.00376.x]
18. Lozhkin L.D., Kuzmenko A.A. (2021). Investigation of CIE color spaces for differences in color differentiation thresholds in different regions of the color locus. Physics of Wave Processes and Radio Systems. 24: 107-110. [DOI: 10.18469/1810-3189.2021.24.3.107-110] [DOI:10.18469/1810-3189.2021.24.3.107-110]
19. Mbaeyi-Nwaoha I.E., Nnagbo C.I., Obodoechi C.M., Nweze B.C., Okonkwo T.M. (2017). Production and evaluation of yoghurt contained local stabilizer - Brachysiegia wurocoma ('Achi') and Detarium microcarpum ('Ofo'). International Journal of Biotechnology and Food Science. 5: 23-31.
20. Ndraha N., Hsiao H., Vlajic J., Yang M.F., Lin H.T.V. (2018). Time-temperature abuse in the food cold chain: review of issues, challenges, and recommendations. Food Control. 89: 12-21. [DOI: 10.1016/j.foodcont.2018.01.027] [DOI:10.1016/j.foodcont.2018.01.027]
21. Ndraha N., Vlajic J., Chang C.-C., Hsiao H.-I. (2020). Challenges with food waste management in the food cold chains. In: Kosseva M.R., Webb C. (Editors). Food industry wastes. 2nd edition. Academic Press, Manchester. pp: 467-483. [DOI: 10.1016/B978-0-12-817121-9.00022-X] [DOI:10.1016/B978-0-12-817121-9.00022-X]
22. Okafor-Elenwo E.J., Imade O.S. (2020). Ready‐to‐eat vegetable salads served in Nigerian restaurants: a potential source of multidrug‐resistant bacteria. Journal of Applied Microbiology. 129: 1402-1409. [DOI: 10.1111/ jam. 14693] [DOI:10.1111/jam.14693] [PMID]
23. Onwuka G.I. (2018). Food analysis and instrumentation. 2nd edition. Theory and Practice, Naphtali Prints, Lagos, Nigeria .pp 115-119.
24. Pathare P.B., Opara U.L., Al-Julanda A.L., Said F. (2013). Color measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology. 6: 36-60. [DOI: 10.1007/s11947-012-0867-9] [DOI:10.1007/s11947-012-0867-9]
25. Perez-Santaescolastica C., Goemaere O., Hanskens J., Lorenzo J.M., Fraeye I. (2020). Effect of stabiliser classes (animal proteins, vegetable proteins, starches, hydrocolloids and dietary fibre) on the physicochemical properties of a model lean meat product. International Journal of Food Science and Technology. 55: 970-977. [DOI: 10.1111/ijfs.14354] [DOI:10.1111/ijfs.14354]
26. Raits E., Raita S., Kirse-Ozolina A., Muizniece-Brasava S. (2021). Theoretical and experimental investigation of the thermal inactivation of Thermoanaerobacterium thermosaccharolyticum and Geobacillus stearothermophilus in different canned food matrices. Rural Sustainability Research. 46: 97-104. [DOI: 10.2478/plua-2021-0021] [DOI:10.2478/plua-2021-0021]
27. Samuel O.O. (2012). Bacteriological quality and safety of street vended foods in Delta State, Nigeria. Journal of Biology, Agriculture and Healthcare. 2: 114-119.
28. Sasaki C., Yamanaka S. (2020). Novel sterilization method combining food preservative use and low temperature steaming for treatment of lignocellulosic biomass with white rot fungi. Industrial Crops and Products. 155: 112765. [DOI: 10.1016/j.indcrop.2020.112765] [DOI:10.1016/j.indcrop.2020.112765]
29. Sevenich R., Bark F., Kleinstueck E., Crews C., Pye C., Hradecký J., Reineke K., Lavilla M., Martínez-de-Marañón I., Briand J.C., Knorr D. (2015). The impact of high pressure thermal sterilization on the microbiological stability and formation of food processing contaminants in selected fish systems and baby food puree at pilot scale. Food Control. 50: 539-547. [DOI: 10.1016/J.FOODCONT.2014.09.050] [DOI:10.1016/j.foodcont.2014.09.050]
30. Shao P., Feng J., Sun P., Xiang N., Lu B., Qiu D. (2020). Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International. 137: 109376. [DOI: 10.1016/j.foodres.2020.109376] [DOI:10.1016/j.foodres.2020.109376] [PMID]
31. Sobol Z., Jakubowski T., Nawara P. (2020). The effect of UV-C stimulation of potato tubers and soaking of potato strips in water on color and analyzed color by CIE L*a*b*. Sustainability. 12: 3487. [DOI: 10.3390/su12083487] [DOI:10.3390/su12083487]
32. Thakur R., Sharma A., Verma P., Asha Devi A. (2023). A review on pharmaceutical emulsion. Asian Journal of Pharmaceutical Research and Development. 11: 143-147. [DOI: 10.22270/ajprd.v11i3.0000] [DOI:10.22270/ajprd.v11i3.1181]
33. Uneanya G.C., Ohaegbulam P.O., Anyanwu V.C. (2019). Proximate composition and microbial evaluation of African salad hawked in Owerri (Ihiagwa, Naze and Nekede). Proceedings of 1st International Conference of Industrial and Applied Sciences. pp. 76-81. URL: https://www.researchgate. net/ profile/Promise-Ohaegbulam/publication/ 342851651_ Proximate_Composition_and_Microbial_Evaluation_of_African_salad_hawked_in_Owerri_Ihiagwa_Naze_and_Nekede/links/5f08d8bf92851c52d62756c5/Proximate-Composition-and-Microbial-Evaluation-of-African-salad-hawked-in-Owerri-Ihiagwa-Naze-and-Nekede.pdf.
34. Uzodinma E.O., Onweluzo J.C., Abugu S.N. (2014). Production and evaluation of instant emulsion base (ncha) from oil palm biogenic waste. African Journal of Biotechnology. 13: 4529-4535. [DOI: 10.5897/AJB2014.13717] [DOI:10.5897/AJB2014.13717]
35. Vodyakova M.A., Pokrovsky N.S., Melnikova E.V., Merkulov V.A. (2023). Recommendations for validation of automated viable cell counting methods (review). Drug Development and Registration. 12: 217-222. [DOI: 10.33380/2305-2066-2023-12-4-1424] [DOI:10.33380/2305-2066-2023-12-4-1424]
36. Wan C., Cheng Q., Zeng M., Huang C. (2023). Recent progress in emulsion gels: from fundamentals to applications. Soft Matter. 19: 1282-1292. [DOI: 10.1039/D2SM01481E] [DOI:10.1039/D2SM01481E] [PMID]
37. Weremfo A., Abassah-Oppong S., Adulley F., Dabie K., Seidu-Larry S. (2022). Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. Journal of the Science of Food and Agriculture. 103: 26-36. [DOI: 10.1002/jsfa.12121] [DOI:10.1002/jsfa.12121] [PMID]
38. Wu D., Sun D.-W. (2013). Color measurements by computer vision for food quality control - a review. Trends in Food Science and Technology. 29: 5-20. [DOI: 10.1016/j.tifs. 2012.08.004] [DOI:10.1016/j.tifs.2012.08.004]
39. Zielińska M., Markowski M. (2012). Color characteristics of carrots; effect of drying and rehydration. International Journal of Food Properties. 15: 450-466. [DOI: 10.1080/10942912.2010.489209] [DOI:10.1080/10942912.2010.489209]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb