Volume 11, Issue 1 (March 2024)                   J. Food Qual. Hazards Control 2024, 11(1): 13-24 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Oleghe P, Akharaiyi F, Ehis-Eriakha C. Compositions Nutrient and Antinutrients of Biscuits Prepared from Fermented and Unfermented Ternary Mixture Flours. J. Food Qual. Hazards Control 2024; 11 (1) :13-24
URL: http://jfqhc.ssu.ac.ir/article-1-1119-en.html
Department of Microbiology, Edo State University Uzairue, KM 7 Auchi-Abuja Road, Iyamho Uzairue, Edo State, Nigeria , akharaiyi.fred@edouniversity.edu.ng
Abstract:   (307 Views)
 Background: The exorbitant cost of wheat-based foods in non-wheat growing countries has necessitated looking for more enriched and sustainable alternative flour from botanicals that can be mixed and used to produce baked products including biscuits. The study aimed to make biscuits using three different fermented and unfermented mixtures of flour (sweet potato, pigeon pea, and yellow maize).
Methods: Starch-rich tubers of yellow-fleshed cultivar of sweet potato (Ipomoea batatas), yellow maize (Zea mays) grains, and pigeon peas (Cajanus cajan) seeds were purchased from food merchants in the Uchi market, located in Auchi area of Edo State, southern Nigeria in June 2022. These botanical samples were taxonomically validated. The samples were divided into two parts fermented and unfermented, prepared and produced into flour forms. The blended raw materials into flour were mixed in order of sweet potato: pigeon pea: maize (composite mix two 60.00:25.47:14.53, composite mix five 67.70:20.00:12.31 and composite mix eight 61.72:25.24:13.04) were selected to produce biscuits while 100% wheat was used as control. Biscuits were produced from the flour using a standard recipe. The obtained results were presented in mean±SD format of interpretations. Analytical significance dissimilarity between the means samples were considered based on one-way analysis of variance (ANOVA) using IBM Statistical software.
Results: It revealed that fermentation increased techno-functional properties containing crude fiber (3.464±0.01-3.485±0.01) and ashes (3.688±0.11-3.711±0.11), while reducing fat (17.339±0.03) and moisture contents (3.639±0.05), the control had the highest protein (12.805±0.25) and lowest carbohydrate (55.622±0.12). The fermented biscuits had more flavonoids (23.162±0.36-23.852±0.60), saponins (14.793±0.07-23.495±0.03). Additionally, fermentation enhanced the potassium bioavailability of the products (19.803±0.00-25.264±0.05). There was high free radical scavenging activity and color for all the fermented samples than unfermented and controlled biscuits.
Conclusion: According to the research, ternary flour mixes from the botanicals could lead to products with improved nutritional composition, functional properties, and antioxidant attributes to further improve biscuit quality.

DOI: 10.18502/jfqhc.11.1.14992
Full-Text [PDF 740 kb]   (216 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/07/04 | Accepted: 24/01/25 | Published: 24/03/26

References
1. Asssociation of Official Analytical Chemists (AOAC). (2012). Official methods of analysis. 19th edition. Association of Official Analytical Chemists, Arlington, Virginia.
2. Asssociation of Official Analytical Chemists (AOAC). (2016). Official methods of analysis of AOAC international. 20th edition. AOAC International, Rockville, Maryland.
3. Azeez W. (2021). Nigeria spends $2bn on wheat importation yearly, says CBN. The Cable New and Views Unlimited. URL: https://www.thecable.ng/ nigeria-spends-2bn-on-wheat-importation-yearly-says-cbn.
4. Bouis H.E., Saltzman A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security. 12: 49-58. [DOI: 10.1016/j.gfs.2017.01.009] [DOI:10.1016/j.gfs.2017.01.009] [PMID] [PMCID]
5. Chandra S., Singh S., Kumari D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology. 52: 3681-3688. [DOI: 10.1007/s13197-014-1427-2] [DOI:10.1007/s13197-014-1427-2]
6. Charu S., Vivek K., Medha S., Ajit Kumar S., Anit K. (2019). Study of physicochemical properties of fermented wheat flour (sheera). Journal of Agricultural Engineering and Food Technology. 6: 271-274.
7. Drewnowski A., Rehm C.D., Maillot M., Mendoza A., Monsivais P. (2015). The feasibility of meeting the WHO guidelines for sodium and potassium: a cross-national comparison study. BMJ Open. 5: e006625. [DOI: 10.1136/bmjopen-2014-006625] [DOI:10.1136/bmjopen-2014-006625] [PMID] [PMCID]
8. Garyfallia K., Rosario M., Jole M., Jesus M.P., Ignacio F.-F. (2020). Natural fermentation of cowpea (Vigna unguiculata) flour improves the nutritive utilization of indispensable amino acids and phosphorus by growing rats. Nutrients. 12: 2186. [DOI: 10.3390/nu12082186] [DOI:10.3390/nu12082186] [PMID] [PMCID]
9. Girgih A.T., Udenigwe C.C., Aluko R.E. (2011). In-vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. Journal of the American Oil Chemists' Society. 88: 381-389. [DOI: 10.1007/s11746-010-1686-7] [DOI:10.1007/s11746-010-1686-7]
10. Govindappa M., Naga Sravya S., Poojashri M.N., Sadananda T.S., Chandrappa C.P., Gustavo Santoyo, Sharanappa P., Anil Kumar N.V. (2011). Antimicrobial, antioxidant and in vitro anti-inflammatory activity and phytochemical screening of water extract of Wedelia trilobata (L.) hitchc. Journal of Medicinal Plants Research. 5: 5718-5729.
11. Hasmadi M., Noorfarahzilah M., Noraidah H., Zainol M.K., Jahurul M.H.A. (2020). Functional properties of composite flour: a review. Food Research. 4: 1820-1831. [DOI: 10.26656/ fr.2017.4(6).419] [DOI:10.26656/fr.2017.4(6).419]
12. Joshi-Saha A., Reddy K.S. (2015). Repeat length variation in the 5'UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.). Journal of Experimental Botany. 66: 5683-5690. [DOI: 10.1093/jxb/erv156] [DOI:10.1093/jxb/erv156] [PMID]
13. Karamad D., Khosravi-Darani K., Hosseini H., Tavasoli S. (2019). Analytical procedures and methods validation for oxalate content estimation. Biointerface research in applied chemistry. 9: 4305-4310. [DOI: 10.33263/briac95.305310] [DOI:10.33263/BRIAC95.305310] [PMID] [PMCID]
14. Kiin-Kabari D.B., Giami S.Y. (2015). Physico chemical properties and in-vitro protein digestibility of non-wheat cookies prepared from plantain flour and bambara groundnut protein concentrate. Journal of Food Research. 4: 78-86. [DOI: 10.5539/jfr.v4n2p78] [DOI:10.5539/jfr.v4n2p78]
15. Knez E., Kadac-Czapska K., Grembecka M. (2023). Effect of fermentation on the nutritional quality of the selected vegetables and legumes and their health effects. Life. 13: 655. [DOI: 10.3390/life13030655] [DOI:10.3390/life13030655] [PMID] [PMCID]
16. Kwofie M.K., Bukari N., Adeboye O. (2020). Probiotics potential of yeast and lactic acid bacteria fermented foods and the impact of processing: a review of indigenous and continental food products. Advances in Microbiology. 10: 492-507. [DOI: 10.4236/aim. 2020.109037] [DOI:10.4236/aim.2020.109037]
17. Lee S., Choi Y., Jeong H.S., Lee J., Sung J. (2018). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Science and Biotechnology. 27: 333-342. [DOI: 10.1007/s10068-017-0281-1] [DOI:10.1007/s10068-017-0281-1]
18. Luo M., Zhou L., Huang Z., Li B., Nice E.C., Xu J., Huang C. (2022). Antioxidant therapy in cancer: rationale and progress. Antioxidants. 11: 1128. [DOI: 10.3390/ antiox11061128] [DOI:10.3390/antiox11061128]
19. Mashau M.E., Maliwichi L.L., Jideani A.I.O. (2021). Non-alcoholic fermentation of maize (zea mays) in sub-saharan Africa. Fermentation. 7: 158. [DOI: 10.3390/ fermentation7030158] [DOI:10.3390/fermentation7030158]
20. Matamane R.P., Pillai M.K., Magama S. (2020). DPPH radical scavenging activity of extracts from Urtica urens (Urticaceae). Journal of Medicinal Plants Research. 14: 232-238. [DOI: 10.5897/ JMPR2019.6880] [DOI:10.5897/JMPR2019.6880]
21. Mhada M., Metougui M.L., El Hazzam K., El Kacimi K., Yasri A. (2020). Variations of saponins, minerals and total phenolic compounds due to processing and cooking of quinoa (Chenopodium quinoa Willd.) seeds. Foods. 9: 660. [DOI: 10.3390/foods9050660] [DOI:10.3390/foods9050660] [PMID] [PMCID]
22. Mente A., O'Donnell M.J., Rangarajan S., McQueen M.J., Poirier P., Wielgosz A., Morrison H., Li W., Wang X., Di C., Mony P., Devanath A., et al. (2014). Association of urinary sodium and potassium excretion with blood pressure. The New England Journal of Medicine. 371: 601-611. [DOI: 10.1056/ NEJMoa1311989] [DOI:10.1056/NEJMoa1311989]
23. Ntrallou K., Gika H., Tsochatzis E. (2020). Analytical and sample preparation techniques for the determination of food colorants in food matrices. Foods. 9: 58. [DOI: 10.3390/foods9010058] [DOI:10.3390/foods9010058] [PMID] [PMCID]
24. N'zi K.P., Adingra K.M.-D., N'guessan K.F., Attchelouwa K.C., Tano K. (2021). Effect of spontaneous fermentation time on physicochemical, nutrient, anti-nutrient and microbiological composition of Lima bean (Phaseolus lunatus) flour. Journal of Applied Biosciences. 162: 16707-16725. [DOI: 10.35759/ JABs.162.3] [DOI:10.35759/JABs.162.3]
25. Okojie J. (2022). Wheat production drops despite FG's funding, surging demand. Business Day. URL: https:// businessday.ng/ agriculture/article/wheat-production- drops-despite-fgs-funding-surging-demand/.
26. Oleghe P.O., Akharaiyi F.C., Ehis-Eriakha C.B., Oladebeye A.A., Johnson D.O. (2023). Microbiological and techno-functional assessment of unfermented and fermented gluten-free flour mixes. International Journal of Life Sciences Research. 11: 33-48. [DOI: 10.5281/zenodo.7984260].
27. Onabanjo O.O., Ighere D.A. (2014). Nutritional, functional and sensory properties of biscuit produced from wheat-sweet potato composite. Journal of Food Technology Research. 1: 111-121. [DOI:10.18488/journal.58/2014.1.2/58.2.111.121]
28. Penn C.J., Camberato J.J., Wiethorn M.A. (2023). How much phosphorus uptake is required for achieving maximum maize grain yield? part 2: impact of phosphorus uptake on grain quality and partitioning of nutrients. Agronomy. 13: 258. [DOI: 10.3390/ agronomy13010258] [DOI:10.3390/agronomy13010258]
29. Sanni A.I., Adesulu A.T. (2013). Microbiological and physico-chemical changes during fermentation of maize for masa production. African Journal of Microbiology Research. 34: 4355-4362. [[DOI: 10.5897/AJMR12.1362]
30. Sharma R., Garg P., Kumar P., Bhatia S.K., Kulshrestha S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 6: 106. [DOI: 10.3390/fermentation6040106] [DOI:10.3390/fermentation6040106]
31. Singh R., Verma P.K., Singh G. (2012). Total phenolic, flavonoids and tannin contents in different extracts of Artemisia absinthium. Journal of Intercultural Ethnopharmacology. 1: 101-104. [DOI: 10.5455/jice.20120525014326] [DOI:10.5455/jice.20120525014326]
32. Sochor J., Dobes J., Krystofova O., Ruttkay-Nedecky B., Babula P., Pohanka M., Jurikova T., Zitka O., Adam V., Klejdus B., Kizek R. (2013). Electrochemistry as a tool for studying antioxidant properties. International Journal of Electrochemical Science. 8: 8464-8489. [DOI:10.1016/S1452-3981(23)12902-6]
33. Squeo G., De Angelis D., Leardi R., Summo C., Caponio F. (2021). Background, applications and issues of the experimental designs for mixture in the food sector. Foods. 10: 1128. [DOI: 10.3390/foods10051128] [DOI:10.3390/foods10051128] [PMID] [PMCID]
34. Szmigielski M., Wesołowska-Janczarek M., Szczepanik M. (2010). Determination of trypsin inhibitor activity of microwave-heated bean seeds using bromocresole purple index (BCPI). Polish Journal of Food and Nutrition Sciences. 60: 329-333.
35. Walkers-Rooijackers J.C.M., Thomas S.M., Nout M.J.R. (2013). Effects of sodium reduction scenarios on fermentation and quality of sauerkraut. LWT - Food Science and Technology. 54: 383-388. [DOI: 10.1016/j.lwt.2013.07.002] [DOI:10.1016/j.lwt.2013.07.002]
36. Wong F.-C., Yong A.-L., Ting E.P.-S., Khoo S.-C., Ongc H.-C., Chai T.-T. (2014). Antioxidant, metal chelating, anti-glucosidase activities and phytochemical analysis of selected tropical medicinal plants. Iranian Journal of Pharmaceutical Research. 13: 1409-1415.
37. Zhao Y.-S., Eweys A.S., Zhang J.-Y., Zhu Y., Bai J., Darwesh O.M., Zhang H.-B., Xiao X. (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants. 10: 2004. [DOI: 10.3390/antiox10122004] [DOI:10.3390/antiox10122004] [PMID] [PMCID]
38. Zhang W., Chen H., Wang Z., Lan G., Zhang L. (2013). Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. Journal of Food Science and Technology. 50: 1122-1129. [DOI: 10.1007/ s13197-011-0447-4] [DOI:10.1007/s13197-011-0447-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb