Volume 10, Issue 3 (September 2023)                   J. Food Qual. Hazards Control 2023, 10(3): 153-162 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajaei A, Salarbashi D, Tafaghodi ‪, Sabeti Z, Sabbagh F, Rakhshani S, et al . Evaluation of Antimicrobial and Structural Properties of Thyme Essential Oil-Loaded Chitosan-Capric Acid and Chitosan-Stearic Acid Nanogels. J. Food Qual. Hazards Control 2023; 10 (3) :153-162
URL: http://jfqhc.ssu.ac.ir/article-1-1144-en.html
Department of Food Science, Nutrition and Clinical Biochemistry, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran, Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , davoud.salarbashi3@gmail.com
Abstract:   (592 Views)
Background: This study aimed to investigate the physicochemical properties, antimicrobial activity, and cytotoxicity of Thyme Essential Oil (TEO) encapsulated by chitosan nanogels.
Methods: In this study, chitosan-stearic acid and chitosan-capric acid nanogels were developed in two ratios of chitosan to fatty acid (10: 1 and 10: 3).
Results: The results of Fourier-Transform Infrared Spectroscopy analysis showed a successful binding of chitosan to capric and stearic acids. Scanning Electron Microscope images revealed that particle formation improved with increase of the ratio of fatty acid to chitosan. The antimicrobial capacity of both encapsulation systems on three species of microorganisms (Staphylococcus aureus, Escherichia coli, and Candida albicans) was studied. A sustained release of curcumin was observed in Simulated Intestine Fluid. The developed nanogels did not have any toxicity on different cell lines. The results also showed that the antimicrobial capacity of TEO encapsulated with chitosan nanogels was higher (p<0.05) than the ionic method (use of sodium triphosphate incorporating chitosan).
Conclusion: The results have shown that encapsulating TEO in chitosan nanogels is a suitable alternative for synthetic antibiotics in different products.

DOI: 10.18502/jfqhc.10.3.13646
Full-Text [PDF 595 kb]   (194 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/05/15 | Accepted: 23/09/15 | Published: 23/09/30

References
1. Ashrafi A., Jokar M., Mohammadi Nafchi A. (2018). Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. International Journal of Biological Macromolecules. 108: 444-454. [DOI: 10.1016/ j.ijbiomac.2017.12.028] [DOI:10.1016/j.ijbiomac.2017.12.028] [PMID]
2. Atarian M., Rajaei A., Tabatabaei M., Mohsenifar A., Bodaghi H. (2019). Formulation of pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydrate Polymers. 210: 47-55. [DOI: 10.1016/j.carbpol.2019.01.008] [DOI:10.1016/j.carbpol.2019.01.008] [PMID]
3. Avadi M.R., Mir Mohammad Sadeghi A., Mohammadpour N., Abedin S., Atyabi F., Dinarvand R., Rafiee-Tehrani M. (2010). Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine: Nanotechnology, Biology and Medicine. 6: 58-63. [DOI: 10.1016/j.nano.2009.04.007] [DOI:10.1016/j.nano.2009.04.007] [PMID]
4. Beyki M., Zhaveh S., Khalili S.T., Rahmani-Cherati T., Abollahi A., Bayat M., Tabatabaei M., Mohsenifar A. (2014). Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products. 54: 310-319. [DOI: 10.1016/j.indcrop.2014.01.033] [DOI:10.1016/j.indcrop.2014.01.033]
5. Chacko R.T., Ventura J., Zhuang J., Thayumanavan S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced Drug Delivery Reviews. 64: 836-851. [DOI: 10.1016/j.addr.2012.02.002] [DOI:10.1016/j.addr.2012.02.002] [PMID] [PMCID]
6. Fathi M., Emam-Djomeh Z., Aliabbasi N. (2021). Developing two new types of nanostructured vehicles to improve biological activity and functionality of curcumin. Food Bioscience. 44: 101386. [DOI: 10.1016/j.fbio.2021.101386] [DOI:10.1016/j.fbio.2021.101386]
7. Gan Q., Wang T., Cochrane C., McCarron P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces. 44: 65-73. [DOI: 10.1016/j.colsurfb.2005.06.001] [DOI:10.1016/j.colsurfb.2005.06.001] [PMID]
8. Goy R.C., De Britto D., Assis O.B.G. (2009). A review of the antimicrobial activity of chitosan. Polímeros. 19: 241-247. [DOI: 10.1590/S0104-14282009000300013] [DOI:10.1590/S0104-14282009000300013]
9. Hadian M., Rajaei A., Mohsenifar A., Tabatabaei M. (2017). Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT. 84: 394-401. [DOI: 10.1016/ j.lwt.2017.05.075] [DOI:10.1016/j.lwt.2017.05.075]
10. Hammer K.A., Carson C.F., Riley T.V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology. 86: 985-990. [DOI: 10.1046/j.1365-2672.1999. 00780.x] [DOI:10.1046/j.1365-2672.1999.00780.x] [PMID]
11. Hosseini E., Rajaei A., Tabatabaei M., Mohsenifar A., Jahanbin K. (2020). Preparation of pickering flaxseed oil-in-water emulsion stabilized by chitosan-myristic acid nanogels and investigation of its oxidative stability in presence of clove essential oil as antioxidant. Food Biophysics. 15: 216-228. [DOI: 10.1007/ s11483-019-09612-z] [DOI:10.1007/s11483-019-09612-z]
12. Lotfinia S., Javanmard Dakheli M., Mohammadi Nafchi A. (2013). Application of starch foams containing plant essential oils to prevent mold growth and improve shelf life of packaged bread. Journal of Chemical Health Risks. 3: 9-18. [DOI: 10.22034/ JCHR.2018.544043]
13. Mousavian D., Mohammadi Nafchi A., Nouri L., Abedinia A. (2021). Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by Thyme essential oil active component. Journal of Food Measurement and Characterization. 15: 883-891. [DOI: 10.1007/s11694-020-00690-z] [DOI:10.1007/s11694-020-00690-z]
14. Mwangi W.W., Ho K.-W., Tey B.-T., Chan E.-S. (2016). Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocolloids. 60: 543-550. [DOI: 10.1016/j.foodhyd.2016.04.023] [DOI:10.1016/j.foodhyd.2016.04.023]
15. Nazem H., Mohsenifar A., Majdi S. (2016). Chitosan-myristate nanogel as an artificial chaperone protects neuroserpin from misfolding. Advanced Biomedical Research. 5: 170. [DOI: 10.4103/2277-9175.190942] [DOI:10.4103/2277-9175.190942] [PMID] [PMCID]
16. Nejati Hafdani F., Sadeghinia N. (2011). A review on application of chitosan as a natural antimicrobial. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. 5: 46-50.
17. Nikolić G.S. (2011). Fourier transforms - new analytical approaches and FTIR strategies. IntechOpen, London, United Kingdom. [DOI: 10.5772/2040] [DOI:10.5772/2040]
18. Rajaei A., Hadian M., Mohsenifar A., Rahmani-Cherati T., Tabatabaei M. (2017). A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life. 14: 137-145. [DOI: 10.1016/j.fpsl.2017.10.005] [DOI:10.1016/j.fpsl.2017.10.005]
19. Rao K.S.V.K., Reddy P.R., Lee Y.-I., Kim C. (2012). Synthesis and characterization of chitosan-PEG-Ag nanocomposites for antimicrobial application. Carbohydrate Polymers. 87: 920-925. [DOI: 10.1016/j.carbpol.2011.07.028] [DOI:10.1016/j.carbpol.2011.07.028] [PMID]
20. Sotelo-Boyás M.E., Correa-Pacheco Z.N., Bautista-Baños S., Corona-Rangel M.L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT. 77: 15-20. [DOI: 10.1016/j.lwt.2016.11.022] [DOI:10.1016/j.lwt.2016.11.022]
21. Wang Y., Chang Y.C. (2003). Synthesis and conformational transition of surface-tethered polypeptide: poly (l-lysine). Macromolecules. 36: 6511-6518. [DOI: 10.1021/ma034093r] [DOI:10.1021/ma034093r]
22. Yang K., Peng H., Wen Y., Li N. (2010). Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Applied Surface Science. 256: 3093-3097. [DOI: 10.1016/j.apsusc.2009.11.079] [DOI:10.1016/j.apsusc.2009.11.079]
23. Zhaveh S., Mohsenifar A., Beiki M., Khalili S.T., Abdollahi A., Rahmani-Cherati T., Tabatabaei M. (2015). Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products. 69: 251-256. [DOI: 10.1016/ j.indcrop.2015.02.028] [DOI:10.1016/j.indcrop.2015.02.028]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb