Volume 11, Issue 2 (June 2024)                   J. Food Qual. Hazards Control 2024, 11(2): 116-126 | Back to browse issues page

Ethics code: 0000


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bekka-Hadji F. Evaluation the Ingredients and Influence of Thermal Treatment on Physicochemical Properties and Bioactive Compounds of Evernia prunastri from Algeria. J. Food Qual. Hazards Control 2024; 11 (2) :116-126
URL: http://jfqhc.ssu.ac.ir/article-1-1147-en.html
Département de Microbiologie Appliquée et Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Jijel, Jijel 18000, Algeria, Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria , fahima.bekka@univ-jijel.dz
Abstract:   (318 Views)
Background: Lichen is a symbiotic organism with unique structure composed of a fungal partner and an algal partner. It has been utilized in folk foods and medicines. The objective of the present study was to analyze the ingredients and the impact of heating on various physicochemical and phytochemical characteristics of a 500 g sample of lichen Evernia prunastri from Jijel, Algeria collected in May 2021.
Methods: The nutritional value of the lichen was determined by studying various parameters. The metal contents were analyzed using an Atomic Absorption Spectrophotometer. The effect of heating (70 and 100 °C) on the physicochemical parameters, and bioactive compounds of aqueous extracts obtained by maceration in distilled water was studied. Statistical analysis was performed using ANOVA.
Results: A high percentage of carbohydrates (64.00%) were observed in the lichen material. Pectin, fats, and crude proteins levels were low. High ash content (10.85%) was obtained with the presence of metal elements. Preliminary phytochemical analysis indicated the presence of polyphenols and flavonoids with 51.13 mg Gallic Acid Equivalent (GAE)/100 g and 17.87 mg Quercetin Equivalent (QE)/100 g of lichen, respectively. The lichen sample subjected to 70 °C demonstrated an increase in the parameters examined, with the exception of proteins and vitamin C. Conversely, the lichen sample treated at 100 °C exhibited a reduction in vitamin C, protein, and bioactive compound content, as well as an increase in sugar content. Titratable acidity and pH parameters were unaffected.
Conclusion: The appreciable quantities of carbohydrates, crude fibers, and other compounds in this lichen suggest a potential use for these active ingredients in the preparation of functional food. Heating to 70 °C produces a preparation enriched in bioactive substances and sugars. However, heating to 100 °C, exposes the various tissues to degradation, potentially leading to a decrease in nutrients.

DOI: 10.18502/jfqhc.11.2.15650
Full-Text [PDF 574 kb]   (168 Downloads)    
Type of Study: Original article | Subject: Special
Received: 24/03/01 | Accepted: 24/06/27 | Published: 24/06/30

References
1. Akbulut G., Yildiz A. (2010). An overview to lichens: the nutrient composition of some species. KafkasKafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 3: 79-86.
2. AOAC. (2000). Official methods of analysis. 17th edition. The Association of Official Analytical Chemists. Gaithersburg, MD, USA. URL: https://law.resource. org/ pub/us/cfr/ibr/002/aoac.methods.1.1990. pdf. Accessed 14 May 2022.
3. Aoussar N., Achmit M., Es-sadeqy Y., Vasiljević P., Rhallabi N., Ait Mhand R., Zerouali K., Manojlović N., Mellouki F. (2021). Phytochemical constituents, antioxidant and antistaphylococcal activities of Evernia prunastri (L.) Ach., Pseudevernia furfuracea (L.) Zopf. and Ramalina farinacea (L.) Ach. from Morocco. Archives of Microbiology. 203: 2887-2894. [DOI: 10.1007/s00203-021-02288-5] [DOI:10.1007/s00203-021-02288-5] [PMID]
4. Arakawa-Kobayashi S., Kanaseki T. (2004). A study of lipid secretion from the lichen symbionts, ascomycetous fungus Myelochroa leucotyliza and green alga Trebouxia sp. Journal of Structural Biology. 146: 401-415. [DOI: 10.1016/j.jsb.2004.01.016] [DOI:10.1016/j.jsb.2004.01.016] [PMID]
5. Aydogdu T., O'Mahony J.A., McCarthy N.A. (2023). pH, the fundamentals for milk and dairy processing: a review. Dairy. 4: 395-340. [DOI: 10.3390/ dairy4030026] [DOI:10.3390/dairy4030026]
6. Behera B.C., Verma N., Sonone A., Makhija U. (2005). Antioxydant and antibacterial activities of lichen usnea ghattensis in vitro. Biotechnology Letters. 27: 991-995. [DOI: 10.1007/s10529-005-7847-3] [DOI:10.1007/s10529-005-7847-3] [PMID]
7. Bekka-Hadji F., Adjeroud-Abdellatif N. (2023). Assessment of phytochemical, antioxidant and antibacterial activities of Evernia prunastri species collected from Algeria. Carpathian Journal of Food Science and Technology. 15: 99-112. [DOI: 10.34302/ crpjfst/2023.15.4.8] [DOI:10.34302/crpjfst/2023.15.4.8]
8. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254. [DOI: 10.1016/ 0003-2697(76)90527-3] [DOI:10.1016/0003-2697(76)90527-3] [PMID]
9. Bukabayeva Z., Abiyev S., Silybayeva B., Assanova U., Sharipkhanova A., Sagdatkyzy B. (2023). Epiphytic and epigeal lichens as bioindicators of air pollution in the Burabay National Park, Kazakhstan. Biodiversitas Journal of Biological Diversity. 24: 2701-2709. [DOI: 10.13057/biodiv/d240523] [DOI:10.13057/biodiv/d240523]
10. Constenla D., Ponce A.G., Lozano J.E. (2002). Effect of pomace drying on apple pectin. LWT - Food Science and Technology. 35: 216-221. [DOI: 10.1006/fstl. 2001.0841] [DOI:10.1006/fstl.2001.0841]
11. Debib A., Tir-Touil M.A., Meddah B., Hamaidi-Chergui F., Menadi S., Alsayadi M.S. (2018). Evaluation of antimicrobial and antioxidant activities of oily macerates of Algerian dried figs (Ficus carica L.). International Food Research Journal. 25: 351-356.
12. Di Nuzzo L., Canali G., Giordani P., Nascimbene J., Benesperi R., Papini A., Bianchi E., Porada P. (2022). Life-stage dependent response of the epiphytic lichen Lobaria pulmonaria to climate. Frontiers in Forests and Global Change. 5: 903607. [DOI: 10.3389/ffgc. 2022.903607] [DOI:10.3389/ffgc.2022.903607]
13. Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry. 97: 654-660. [DOI: 10.1016/j.foodchem.2005.04.028] [DOI:10.1016/j.foodchem.2005.04.028]
14. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356. [DOI: 10.1021/ac60111a017] [DOI:10.1021/ac60111a017]
15. Favero-Longo S.E., Piervittori R. (2010). Lichen-plant interactions. Journal of Plant Interactions. 5: 163-177. [DOI: 10.1080/17429145.2010.492917] [DOI:10.1080/17429145.2010.492917]
16. Gautam A.K., Yadav D., Bhagyawant S.S., Singh P.K., Jin J.O. (2021). Lichen: a comprehensive review on lichens as a natural sources exploring nutritional and biopharmaceutical benefits. Progress in Nutrition. 23: e2021153. [DOI: 10.23751/pn.v23i3.9833]
17. Giannakourou M.C., Taoukis P.S. (2021). Effect of alternative preservation steps and storage on vitamin C stability in fruit and vegetable products: critical review and kinetic modelling approaches. Foods. 10: 2630. [DOI: 10.3390/foods10112630] [DOI:10.3390/foods10112630] [PMID] [PMCID]
18. Hosseini S.S., Khodaiyan F., Yarmand M.S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers. 140: 59-65. [DOI: 10.1016/j.carbpol.2015.12.051] [DOI:10.1016/j.carbpol.2015.12.051] [PMID]
19. Ivanova D.G., Ivanov D. (2009). Ethnobotanical use of lichens: lichens for food review. Scripta Scientifica Medica. 41: 11-16. [DOI: 10.14748/ssm.v41i1.456] [DOI:10.14748/ssm.v41i1.456]
20. Kondratiuk A.S., Savchuk O.M., Hur J.S. (2015). Optimization of protein extraction for lichen thalli. Mycobiology. 43: 157-162. [DOI: 10.5941/MYCO. 2015.43.2.157] [DOI:10.5941/MYCO.2015.43.2.157] [PMID] [PMCID]
21. Kumar S.V.P., Kekuda T.R.P.,Vinayaka K.S., Swathi D., Mallikarjun N., Nishanth B.C. (2010). Studies on proximate composition, antifungal and anthelmintic activity of a macrolichen Ramalina hossei H. Magn and G. Awasthi. International Journal of Biotechnology and Biochemistry. 6: 191-201.
22. Lackovičová A., Guttova A., Backor M., Pišút P. (2013). Response of Evernia prunastri to urban environmental conditions in central Europe after the decrease of air pollution. The Lichenologist. 45: 89-100. [DOI: 10.1017/S002428291200062X] [DOI:10.1017/S002428291200062X]
23. Lapornik B., Prošek M., Wondra A.G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering. 71: 214-222. [DOI: 10.1016/j.jfoodeng. 2004.10.036] [DOI:10.1016/j.jfoodeng.2004.10.036]
24. Loppi S., Pacioni G., Olivieri N., Giacomo F.D. (1998). Accumulation of trace metals in the lichen Evernia prunastri transplanted at biomonitoring sites in central Italy. The Bryologist.101: 451-454. [DOI: 10.2307/ 3244187] [DOI:10.2307/3244187]
25. Meli M.A., Desideri D., Cantaluppi C., Ceccotto F., Feduzi L., Roselli C. (2018). Elemental and radiological characterization of commercial Cetraria islandica (L.) Acharius pharmaceutical and food supplementation products. Science of the Total Environment. 613-614: 1566-1572. [DOI: 10.1016/j.scitotenv.2017.08.320] [DOI:10.1016/j.scitotenv.2017.08.320] [PMID]
26. Moslemi M. (2021). Reviewing the recent advances in application of pectin for technical and health promotion purposes: from laboratory to market. Carbohydrate Polymers. 254: 117324. [DOI: 10.1016/j.carbpol.2020. 117324] [DOI:10.1016/j.carbpol.2020.117324] [PMID]
27. Muthu S., Murugan M., Rajendran K., Ponmurugan P. (2021). An assessment of proximate composition, antioxidant activities and LC/MS based phytochemical profiling of some lichen species collected fromwestern Ghats of southern part of India. Jordan Journal of Biological Sciences.14: 647-661. [DOI: 10.54319/jjbs/ 140404]. [DOI:10.54319/jjbs/140404]
28. Olano-Martin E., Gibson G.R., Rastall R.A. (2002). Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. Journal of Applied Microbiology. 93: 505-511. [DOI: 10.1046/j.1365-2672.2002.01719.x.] [DOI:10.1046/j.1365-2672.2002.01719.x] [PMID]
29. Podterob A.P. (2008). Chemical composition of lichens and their medical applications. Pharmaceutical Chemistry Journal. 42: 582-588. [DOI: 10.1007/ s11094-009-0183-5] [DOI:10.1007/s11094-009-0183-5]
30. Poulsen-Silva E., Gordillo-Fuenzalida F., Atala C., Moreno A.A., Otero M.C. (2023). Bioactive lichen secondary metabolites and their presence in species from Chile. Metabolites. 13: 805. [DOI: 10.3390/metabo13070805] [DOI:10.3390/metabo13070805] [PMID] [PMCID]
31. Prashith Kekuda T.R., Vinayaka K.S., Swathi D., Suchitha Y., Venugopal T.M., Mallikarjun N. (2011). Mineral composition, total phenol content and antioxidant activity of a macrolichen Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae). E-Journal of Chemistry. 8: 1886-1894. [DOI: 10.1155/2011/420673] [DOI:10.1155/2011/420673]
32. Rakić S., Petrović S., Kukić J., Jadranin M., Tešević V., Povrenović D., Šiler-Marinković S. (2007). Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chemistry. 104: 830-834. [DOI: 10.1016/j.foodchem. 2007.01.025] [DOI:10.1016/j.foodchem.2007.01.025]
33. Ren M., Jiang S., Wang Y., Pan X., Pan F., Wei X. (2023). Discovery and excavation of lichen bioactive natural products. Frontiers in Microbiology. 14: 1177123. [DOI: 10.3389/fmicb.2023.1177123] [DOI:10.3389/fmicb.2023.1177123] [PMID] [PMCID]
34. Rezzoug S.A., Maache-Rezzoug Z., Sannier F., Allaf K. (2008). A thermomechanical preprocessing for pectin extraction from orange peel. Optimisation by response surface methodology. International Journal of Food Engineering. 4: 10. [DOI: 10.2202/1556-3758.1183] [DOI:10.2202/1556-3758.1183]
35. Rola K. (2020). Insight into the pattern of heavy-metal accumulation in lichen thalli. Journal of Trace Elements in Medicine and Biology. 61: 126512. [DOI: 10.1016/j.jtemb.2020.126512] [DOI:10.1016/j.jtemb.2020.126512] [PMID]
36. Rozzamri A., Atiqah-Izyannie A.M., Mat Yusoff M., Ismail-Fitry M.R. (2020). Effects of leavening agents in batter system on quality of deep-fried chicken breast meat. Food Research. 4: 327-334. [DOI: 10.26656/ fr.2017.4(2).273] [DOI:10.26656/fr.2017.4(2).273]
37. Shahbazi K., Beheshti M. (2019). Comparison of three methods for measuring heavy metals in calcareous soils of Iran. SN Applied Sciences. 1: 1541. [DOI: 10.1007/s42452-019-1578-x] [DOI:10.1007/s42452-019-1578-x]
38. Spigno G., Tramelli L., De Faveri D.M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering. 81: 200-208. [DOI: 10.1016/j.jfoodeng.2006.10.021] [DOI:10.1016/j.jfoodeng.2006.10.021]
39. Stamenković S.S., Mitrović T.LJ., Cvetković V.J., Krstić N.S., Baošić R.M., Marković M.S., Nikolić N.D., Marković V.L.J., Cvijan M.V. (2013). Biological indication of heavy metal pollution in the areas of DonjeVlase and Cerje (southeastern serbia) using epiphytic lichens. Archives of Biological Sciences. 65: 151-159. [DOI: 10.2298/ABS1301151S] [DOI:10.2298/ABS1301151S]
40. Sujetoviene G., Sliumpaite I. (2013). Response of EverniaE prunastri transplanted to an urban area in central Lithuania. Atmospheric Pollution Research. 4: 222-228. [DOI: 10.5094/APR.2013.023] [DOI:10.5094/APR.2013.023]
41. Svihus B., Holand Ø. (2000). Lichen polysaccharides and their relation to reindeer/caribou nutrition. Journal of Range Management. 53: 642-648. [DOI: 10.2307/ 4003160] [DOI:10.2307/4003160]
42. Tabbabi K., Karmous T. (2018). Use of lichens as bio-indicators in assessing the level of air pollution in the region of Bizerte study of pollutants attached to frond lichens by atomic spectroscopy and emission spectroscopy by plasma torch. Moroccan Journal of Chemistry. 6: 148-159. [DOI: 10.48317/IMIST.PRSM/ morjchem-v6i1.6064]
43. Thakur A., Singh S., Puri S. (2021). Nutritional evaluation, phytochemicals, antioxidant and antibacterial activity of Stellaria monosperma Buch.-Ham. Ex D. Don and Silene vulgaris (Moench) Garcke: wild edible plants of western Himalayas. Jordan Journal of Biological Sciences. 14: 83-90. [DOI: 10.54319/jjbs/140111] [DOI:10.54319/jjbs/140111]
44. Thiex N.J., Manson H., Anderson S., Persson J.Å. (2002). Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC International. 85: 309-317. [DOI: 10.1093/jaoac/85.2.309] [DOI:10.1093/jaoac/85.2.309] [PMID]
45. Tiencheu B., Njabi Nji D., Achidi A.U., Egbe A.C., Tenyang N., Ngongang E.F.T., Djikeng F.T., Fossi B.T. (2021). Nutritional, sensory, physico-chemical, phytochemical, microbiological and shelf-life studies of natural fruit juice formulated from orange (Citrus sinensis), lemon (Citrus limon), honey and ginger (Zingiberofficinale). Heliyon. 7: e07177. [DOI: 10. 1016/j.heliyon.2021.e07177] [DOI:10.1016/j.heliyon.2021.e07177] [PMID] [PMCID]
46. Tiquia S.M. (2010). Reduction of compost phytotoxicity during the process of decomposition. Chemosphere. 79: 506-512. [DOI: 10.1016/j.chemosphere.2010. 02.040] [DOI:10.1016/j.chemosphere.2010.02.040] [PMID]
47. Turkmen N., Sari F., Velioglu Y.S. (2006). Effect of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry. 99: 835-841. [DOI: 10. 1016/j.foodchem.2005.08.034] [DOI:10.1016/j.foodchem.2005.08.034]
48. Turkmen N., Sari F., Velioglu Y.S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry. 93: 713-718. [DOI: 10.1016/j.foodchem.2004.12.038] [DOI:10.1016/j.foodchem.2004.12.038]
49. Vinayaka K.S., Praveen Kumar S.V., Prashith Kekuda T.R., Krishnamurthy Y.L., Mallikarjun N., Swathi D. (2009). Proximate composition, antioxidant, anthelmintic and insecticidal activity of a macrolichen Ramalina conduplicans Vain. (Ramalinaceae). European Journal of Applied Sciences.1: 40-46.
50. Witmer J.R., Wetherell B.J., Wagner B.A., Du J., Cullen J.J., Buettner G.R. (2016). Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma. Redox Biology. 8: 298-304. [DOI: 10.1016/ j.redox.2016.02.004] [DOI:10.1016/j.redox.2016.02.004] [PMID] [PMCID]
51. Yang R.Y., Lin S., Kuo G. (2008). Content and distribution of flavonoids among 91 edible plant species. Asia of Pacific Journal of Clinical Nutrition. 17: 275-279.
52. Zhao Y., Wang M., Xu B. (2021). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods. 80: 1-17. [DOI: 10.1016/j.jff.2020.104283] [DOI:10.1016/j.jff.2020.104283]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb