Volume 11, Issue 2 (June 2024)                   J. Food Qual. Hazards Control 2024, 11(2): 71-81 | Back to browse issues page

Ethics code: 0000


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Guemra I, Adoui F, Sabba E, Ferhat R, Benatallah L. Influence of Soaking, Boiling, Roasting, and Germination on the Composition and Functional Properties of Algerian Chickpea Flour, and the Consumer Acceptability of Chickpea Cheese Analogue. J. Food Qual. Hazards Control 2024; 11 (2) :71-81
URL: http://jfqhc.ssu.ac.ir/article-1-1148-en.html
Génie Agro-Alimentaire Laboratory (GENIAAL), Institute of Nutrition Food and Agri-Food Technologies I.N.A.T.A-A., Mentouri Brothers University Constantine 1, Constantine, Algeria, Scientific and Technical Research Center in Physicochemical Analyses (CRAPC), Bousmail, Tipaza, Algeria , imane.guemra@doc.umc.edu.dz
Abstract:   (319 Views)
Background: Chickpeas, rich in protein and fiber, are essential in a healthy diet, as the plant-based cheese industry responding to environmental demands. The objectives of current study were dual-folded: to scrutinize the impact of diverse treatments on the physicochemical and functional characteristics of chickpea flour, and to assess the suitability of this chickpea flour as a raw material for the formulation of a plant-based cheese analogue.
Methods: Soaking at room temperature for 15 h, boiling for 20 min, roasting at 180 °C for 30 min, and germination for 24 h were utilized for a chickpea variety harvested from Constantine of Algeria in 2021. The effects of these treatments were investigated with regard to the chemical composition and functional features of chickpea flour. Additionally, The suitability of chickpea flour for the development of plant-based cheese analog was ascertained by analyzing its color properties, texture profile, and sensory evaluation. ANOVA (XLSTAT 2014) and Tukey’s pairwise comparison test at the 5% significance level (p<0.05) were applied to perform statistical analysis.
Results: All used treatments resulted in significant enhancements (p<0.05) in crude fat content and Emulsifying Capacity, along with significant reductions in swelling and Foaming Capacity, which was notably high in raw chickpea flour with 142.06%. Moreover, roasting reduced significantly moister content and exerted a positive effect on Water Absorption Capacity. However, the remaining chemical composition parameters and functional characteristics failed to reveal significant changes following the applied treatments. In texture profile analysis, chickpea cheese analogs exhibited lower values of hardness and cohesiveness in comparison with the commercial cheese. The chickpea cheese analogues received lower scores  compared to the commercial cheese based on the sensory evaluation.
Conclusion: Each treatment manifested distinct impacts on the chemical composition and functional properties of raw chickpea flour. Chickpea cheese analogue failed to be well-received by consumers.

DOI: 10.18502/jfqhc.11.2.15646
Full-Text [PDF 563 kb]   (259 Downloads)    
Type of Study: Original article | Subject: Special
Received: 23/11/25 | Accepted: 24/05/27 | Published: 24/06/30

References
1. Aguilar-Raymundo V.G., Vélez-Ruíz J.F. (2016). Characterization of two chickpea varieties and the effect of cooking on their physico-chemical and functional properties of flours. Journal of Food Research. 5: 2016. [DOI: 10.5539/jfr.v5n5p67] [DOI:10.5539/jfr.v5n5p67]
2. Agume A.S.N., Njintang N.Y., Mbofung C.M.F. (2017). Effect of soaking and roasting on the physicochemical and pasting properties of soybean flour. Foods. 6: 12. [DOI: 10.3390/foods6020012] [DOI:10.3390/foods6020012] [PMID] [PMCID]
3. Alajaji S.A., El-Adawy T.A. (2006). Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis. 19: 806-812. [DOI: 10.1016/j.jfca.2006.03.015] [DOI:10.1016/j.jfca.2006.03.015]
4. Association of Official Analytical Chemists (AOAC). (2005). Official method 978.10, fiber (crude) in animal feed and pet food, official methods of analysis of AOAC International. 18th edition. AOAC International, Gaithersburg, MD, USA.
5. Association of Official Analytical Chemists (AOAC). (1995). Official methods of analysis of AOAC international. 16th edition. Washington, DC. URL: https://search.worldcat.org/fr/title/Official-methods-of-analysis-of-AOAC-international/oclc/421897987.
6. Avanza M.V., Chaves M.G., Acevedo B.A., Añón M.C. (2012). Functional properties and microstructure of cowpea cultivated in north-east Argentina. LWT - Food Science and Technology. 49: 123-130. [DOI: 10.1016/j.lwt.2012.04.015] [DOI:10.1016/j.lwt.2012.04.015]
7. Bachmann H.-P. (2001). Cheese analogues: a review. International Dairy Journal. 11: 505-515. [DOI: 10.1016/S0958-6946(01)00073-5] [DOI:10.1016/S0958-6946(01)00073-5]
8. Benítez V., Mollá E., Martín-Cabrejas M.A., Aguilera Y., López-Andréu F.J., Esteban R.M. (2011). Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chemistry. 127: 501-507. [DOI: 10.1016/j.foodchem.2011.01.031] [DOI:10.1016/j.foodchem.2011.01.031] [PMID]
9. Benmeziane-Derradji F., Djermoune-Arkoub L., Ayat N.E.-H., Aoufi D. (2020). Impact of roasting on the physicochemical, functional properties, antioxidant content and microstructure changes of Algerian lentil (Lens culinaris) flour. Journal of Food Measurement and Characterization. 14: 2840-2853. [DOI: 10.1007/s11694-020-00529-7] [DOI:10.1007/s11694-020-00529-7]
10. Bressani R. (1993). Grain quality of common beans. Food Reviews International. 9: 237-297. [DOI: 10.1080/87559129309540960] [DOI:10.1080/87559129309540960]
11. Bubelová Z., Sumczynski D., Salek R.N. (2017). Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L.). Journal of Food Processing and Preservation. 42: e13388. [DOI: 10.1111/jfpp.13388] [DOI:10.1111/jfpp.13388]
12. Buckingham J. (2018). Super easy vegan cheese cookbook: 70 delicious plant-based cheeses. Rockridge Press, Emeryville, California.
13. Butt N.A., Ali T.M., Hasnain A. (2020). Development of rice starch‐based casein and fat mimetics and its application in imitation mozzarella cheese. Journal of Food Processing and Preservation. 44: e14928. [DOI: 10.1111/jfpp.14928] [DOI:10.1111/jfpp.14928]
14. Calles T., Del Castello R., Baratelli M., Xipsiti M., Navarro D.K. (2019). The international year of pulses: final report. FAO, Rome. URL: file:///C:/Users/admin/Downloads/ca2853en-3.pdf. [DOI:10.1007/s12665-019-8106-6]
15. Chauhan A., Saxena D.C., Singh S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology. 63: 939-945. [DOI: 10.1016/j.lwt. 2015.03.115] [DOI:10.1016/j.lwt.2015.03.115]
16. Chinma C.E., Adewuyi O., Abu J.O. (2009). Effect of germination on the chemical, functional and pasting properties of flour from brown and yellow varieties of tigernut (Cyperus esculentus). Food Research International. 42: 1004-1009. [DOI: 10.1016/j.foodres.2009.04.024] [DOI:10.1016/j.foodres.2009.04.024]
17. Chinma C.E., Anuonye J.C., Simon O.C., Ohiare R.O., Danbaba N. (2015). Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food Chemistry. 185: 454-458. [DOI: 10.1016/j.foodchem.2015.04.010] [DOI:10.1016/j.foodchem.2015.04.010] [PMID]
18. Cornejo F., Novillo G., Villacrés E., Rosell C.M. (2019). Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination. Food Research International. 121: 933-939. [DOI: 10.1016/j.foodres.2019.01.022] [DOI:10.1016/j.foodres.2019.01.022] [PMID]
19. Du S.-K., Jiang H., Yu X., Jane J.-L. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology. 55: 308-313. [DOI: 10.1016/j.lwt.2013.06.001] [DOI:10.1016/j.lwt.2013.06.001]
20. El-Adawy T.A. (2002). Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods for Human Nutrition. 57: 83-97. [DOI: 10.1023/A:1013189620528] [DOI:10.1023/A:1013189620528] [PMID]
21. Erba D., Angelino D., Marti A., Manini F., Faoro F., Morreale F., Pellegrini N., Casiraghi M.C. (2019). Effect of sprouting on nutritional quality of pulses. International Journal of Food Sciences and Nutrition. 70: 30-40. [DOI: 10.1080/09637486.2018.1478393] [DOI:10.1080/09637486.2018.1478393] [PMID]
22. Ferawati F., Hefni M., Östbring K., Witthöft C. (2021). The application of pulse flours in the development of plant-based cheese analogues: proximate composition, color, and texture properties. Foods. 10: 2208. [DOI: 10.3390/foods10092208] [DOI:10.3390/foods10092208] [PMID] [PMCID]
23. Ferawati F., Hefni M., Witthöft C. (2019). Flours from swedish pulses: effects of treatment on functional properties and nutrient content. Food Science and Nutrition. 7: 4116-4126. [DOI: 10.1002/fsn3.1280] [DOI:10.1002/fsn3.1280] [PMID] [PMCID]
24. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. (2013). Tackling climate change through livestock - a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
25. Grossmann L., McClements D.J. (2021). The science of plant-based foods: approaches to create nutritious and sustainable plant-based cheese analogs. Trends in Food Science and Technology. 118: 207-229. [DOI: 10.1016/j.tifs.2021.10.004] [DOI:10.1016/j.tifs.2021.10.004]
26. Güzel D., Sayar S. (2012). Effect of cooking methods on selected physicochemical and nutritional properties of barlotto bean, chickpea, faba bean, and white kidney bean. Journal of Food Science and Technology. 49: 89-95. [DOI: 10.1007/s13197-011-0260-0] [DOI:10.1007/s13197-011-0260-0] [PMID] [PMCID]
27. Handa V., Kumar V., Panghal A., Suri S., Kaur J. (2017). Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. Journal of Food Science and Technology. 54: 4229-4239. [DOI: 10.1007/s13197-017-2892-1] [DOI:10.1007/s13197-017-2892-1] [PMID] [PMCID]
28. Horwitz W., Latimer G.W., Association of Official Analytical Chemists International. (2006). Official methods of analysis of AOAC International, 18th edition. AOAC International, Gaithersburg, Maryland.
29. Iwe M.O., Michael N., Madu N.E., Obasi N.E., Onwuka G.I., Nwabueze T.U., Onuh J.O. (2017). Physicochemical and pasting properties high quality cassava flour (HQCF) and wheat flour blends. Agrotechnology. 6: 167. [DOI: 10.4172/2168-9881.1000167] [DOI:10.4172/2168-9881.1000167]
30. Jiang Z.-Q., Pulkkinen M., Wang Y.-J., Lampi A.-M., Stoddard F.L., Salovaara H., Piironen V., Sontag-Strohm T. (2016). Faba bean flavour and technological property improvement by thermal pre-treatments. LWT - Food Science and Technology. 68: 295-305. [DOI: 10.1016/j.lwt.2015.12.015] [DOI:10.1016/j.lwt.2015.12.015]
31. Kaur M., Singh N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry. 91: 403-411. [DOI: 10.1016/j. foodchem.2004.06.015] [DOI:10.1016/j.foodchem.2004.06.015]
32. Khattab R.Y., Arntfield S.D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. antinutritional factors. LWT - Food Science and Technology. 42: 1113-1118. [DOI: 10.1016/j.lwt.2009.02.004] [DOI:10.1016/j.lwt.2009.02.004]
33. Klang J.M., Tene S.T., Nguemguo Kalamo L.G., Boungo G.T., Ndomou Houketchang S.C., Kohole Foffe H.A., Womeni H.M. (2019). Effect of bleaching and variety on the physico-chemical, functional and rheological properties of three new Irish potatoes (Cipira, Pamela and Dosa) flours grown in the locality of Dschang (West region of Cameroon). Heliyon. 5: e02982. [DOI: 10.1016/j.heliyon.2019.e02982] [DOI:10.1016/j.heliyon.2019.e02982] [PMID] [PMCID]
34. Ladjal Ettoumi Y., Chibane M. (2015). Some physicochemical and functional properties of pea, chickpea and lentil whole flours. International Food Research Journal. 22: 987-996.
35. Le Tohic C., O'Sullivan J.J., Drapala K.P., Chartrin V., Chan T., Morrison A.P., Kerry J.P., Kelly A.L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering. 220: 56-64. [DOI: 10.1016/j.jfoodeng.2017.02.003] [DOI:10.1016/j.jfoodeng.2017.02.003]
36. Martínez-Preciado A.H., Ponce-Simental J.A., Schorno A.L., Contreras-Pacheco M.L., Michel C.R., Rivera-Ortiz K.G., Soltero J.F.A. (2020). Characterization of nutritional and functional properties of "Blanco Sinaloa" chickpea (Cicer arietinum L.) variety, and study of the rheological behavior of hummus pastes. Journal of Food Science and Technology. 57: 1856-1865. [DOI: 10.1007/s13197-019-04220-8] [DOI:10.1007/s13197-019-04220-8] [PMID] [PMCID]
37. Ouazib M., Moussou N., Oomah B.D., Zaidi F., Wanasundara J.P.D. (2015). Effect of processing and germination on nutritional parameters and functional properties of chickpea (Cicer arietinum L.) from Algeria. Journal of Food Legumes. 28: 133-140.
38. Oyeyinka A.T., Odukoya J.O., Adebayo Y.S. (2019). Nutritional composition and consumer acceptability of cheese analog from soy and cashew nut milk. Journal of Food Processing and Preservation. 43: e14285. [DOI: 10.1111/jfpp.14285] [DOI:10.1111/jfpp.14285]
39. Prinyawiwatkul W., Mcwatters K.H., Beuchat L.R., Phillips R.D. (1997). Optimizing acceptability of chicken nuggets containing fermented cowpea and peanut flours. Journal of Food Science. 62: 889-905. [DOI: 10.1111/j.1365-2621.1997.tb15480.x] [DOI:10.1111/j.1365-2621.1997.tb15480.x]
40. Sabba E., Boudida Y., Boudjellal A. (2023). Evaluation of fatty acid and the composition of six different species of freshwater fish in the North of Algeria. Journal of Food Quality and Hazards Control. 10: 115-122. [DOI: 10.18502/jfqhc.10.3.13642] [DOI:10.18502/jfqhc.10.3.13642]
41. Schlegel K., Leidigkeit A., Eisner P., Schweiggert-Weisz U. (2019). Technofunctional and sensory properties of fermented lupin protein isolates. Foods. 8: 678. [DOI: 10.3390/foods8120678] [DOI:10.3390/foods8120678] [PMID] [PMCID]
42. Seleet F.L., Kassem J.M., Bayomim H.M., Abd-Rabou N.S., Ahmed N.S. (2014). Production of functional spreadable processed cheese analogue supplemented with chickpea. International Journal of Dairy Science. 9: 1-14. [DOI: 10.3923/ijds.2014.1.14] [DOI:10.3923/ijds.2014.1.14]
43. Setia R., Dai Z., Nickerson M.T., Sopiwnyk E., Malcolmson L., Ai Y. (2019). Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Research International. 122: 263-272. [DOI: 10.1016/j.foodres. 2019.04.021] [DOI:10.1016/j.foodres.2019.04.021] [PMID]
44. Shen Y., Tang X., Li Y. (2021). Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry. 339: 127823. [DOI: 10.1016/j.foodchem.2020.127823] [DOI:10.1016/j.foodchem.2020.127823] [PMID]
45. Shevkani K., Singh N., Kaur A., Rana J.C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocolloids. 43: 679-689. [DOI: 10.1016/j.foodhyd.2014.07.024] [DOI:10.1016/j.foodhyd.2014.07.024]
46. Sofi S.A., Rafiq S., Singh J., Mir S.A., Sharma S., Bakshi P., McClements D.J., Mousavi Khaneghah A., Dar B.N. (2023). Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chemistry. 405: 135011. [DOI: 10.1016/j.foodchem.2022.135011] [DOI:10.1016/j.foodchem.2022.135011] [PMID]
47. Sofi S.A., Singh J., Muzaffar K., Mir S.A., Dar B.N. (2020). Effect of germination time on physico-chemical, functional, pasting, rheology and electrophoretic characteristics of chickpea flour. Journal of Food Measurement and Characterization. 14: 2380-2392. [DOI: 10.1007/s11694-020-00485-2] [DOI:10.1007/s11694-020-00485-2]
48. Suárez-Estrella D., Bresciani A., Iametti S., Marengo M., Pagani M.A., Marti A. (2020). Effect of sprouting on proteins and starch in quinoa (Chenopodium quinoa Willd.). Plant Foods for Human Nutrition. 75: 635-641. [DOI: 10.1007/s11130-020-00864-6] [DOI:10.1007/s11130-020-00864-6] [PMID]
49. Tonfack Djikeng F., Mouto Ndambwe C.M., Ngangoum E.S., Tiencheu B., Tambo Tene S., Achidi A.U., Womeni H.M. (2022). Effect of different processing methods on the proximate composition, mineral content and functional properties of snail (Archachatina marginata) meat. Journal of Agriculture and Food Research. 8: 100298. [DOI: 10.1016/j.jafr.2022.100298] [DOI:10.1016/j.jafr.2022.100298]
50. Wani S.A., Kumar P. (2014). Comparative study of chickpea and green pea flour based on chemical composition, functional and pasting properties. Journal of Food Research and Technology. 2: 124-129. [DOI: 10.13140/2.1.3470.4964]
51. Xu M., Jin Z., Simsek S., Hall C., Rao J., Chen B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry. 295: 579-587. [DOI: 10.1016/j.foodchem.2019.05.167] [DOI:10.1016/j.foodchem.2019.05.167] [PMID]
52. Xu Y., Thomas M., Bhardwaj H.L. (2014). Chemical composition, functional properties and microstructural characteristics of three kabuli chickpea (Cicer arietinum L.) as affected by different cooking methods. International Journal of Food Science & Technology. 49: 1215-1223. [DOI: 10.1111/ijfs.12419] [DOI:10.1111/ijfs.12419]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb