Volume 12, Issue 3 (September 2025)                   J. Food Qual. Hazards Control 2025, 12(3): 183-191 | Back to browse issues page

Ethics code: Not applicable.


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shakeri F, Bahmani Z, Mirmoghtadaie L. Effect of Deamination and Agar Addition on Physical Properties of Gelatin Extracted from Thunnus tonggol Skin. J. Food Qual. Hazards Control 2025; 12 (3) :183-191
URL: http://jfqhc.ssu.ac.ir/article-1-1175-en.html
National Fish Processing Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran , zabihbahmani@gmail.com
Abstract:   (39 Views)
Background: In the past decade, gelatin extraction from fish skin has been intensively investigated. In comparison to mammalian gelatin, fish gelatin has weaker gelatinous and rheological properties, which limits its widespread application. Deamidation and addition of agar hydrocolloid performed to improve the physical and functional properties of fish gelatin.
Methods: Gelatin extraction from fish skin was done using acid pretreatment and applying heat. Agar was also extracted from Gracilaria persica algae by alkaline method and after adding it to gelatin, the values of melting point, gel strength, isoelectric point, and type of constituent peptides and amide bands of gelatin were determined.
Results: Gel strength and melting point in unmodified treatment (control) were 92.65g, and 18.5 oC, respectively. These values were increased to (170.85 g: 24.7 oC), and (108.78 g: 21.8 oC), respectively, through deamination process with 1N NaOH solution for 12 h and Agar addition (2% w/v agar extracted from Gracilaria persica). The isoelectric point of the deaminated sample decreased from 8.94 to 5.90, but no noticeable change in the isoelectric point was seen in the modified sample with agar (8.25). Fourier Transform Infrared Spectroscopy spectra showed that the deamination and agar addition to gelatin caused changes in the amide bonds, covalent bonding sites, and crosslinking of gelatin powder; consequently, increasing gel strength and melting point. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis results showed that the two methods of deamination and addition of agar led to an increase in the molecular weight of gelatin.
Conclusion: The findings indicated that gelatin and agar interacted successfully. The gelatin/agar mixture exhibited the highest gel strength and melting point and in the deaminated sample, the increase in gel strength and melting point was attributed to the reduction in the isoelectric point of the modified gelatin, which caused the gelatin strands to come closer together and form stronger hydrogen bonds.

10.18502/jfqhc.12.3.19782
Full-Text [PDF 725 kb]   (23 Downloads)    
Type of Study: Original article | Subject: Special
Received: 24/09/01 | Accepted: 25/07/20 | Published: 25/09/30

References
1. Abedi E., Pourmohammadi K. (2021). Chemical modifications and their effects on gluten protein: an extensive review. Food Chemistry. 343: 128398. [DOI: 10.1016/j.foodchem.2020.128398]
2. Aewsiri T., Benjakul S., Visessanguan W., Tanaka M. (2008). Chemical compositions and functional properties of gelatin from pre‐cooked tuna fin. International Journal of Food Science and Technology. 43: 685-693. [DOI: 10.1111/j.1365-2621.2006.01509.x]
3. Aewsiri T., Benjakul S., Visessanguan W., Wierenga P.A., Gruppen H. (2013). Emulsifying property and antioxidative activity of cuttlefish skin gelatin modified with oxidized linoleic acid and oxidized tannic acid. Food and Bioprocess Technology. 6: 870-881. [DOI: 10.1007/s11947-011-0636-1]
4. Ahmed J. (2017). Rheological properties of gelatin and advances in measurement. In: Ahmed J. (Editor). Advances in food rheology and its applications. Woodhead Publishing, Cambridge, UK. pp: 377-404. [DOI:10.1016/B978-0-08-100431-9.00015-2]
5. Asih I.D., Kemala T., Nurilmala M. (2019). Halal gelatin extraction from Patin fish bone (Pangasius hypophthalmus) by-product with ultrasound-assisted extraction. IOP Conference Series: Earth and Environmental Science. 299: 012061. [DOI: 10.1088/1755-1315/299/1/012061]
6. Badii F., Howell N.K. (2006). Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids. 20: 630-640. [DOI: 10.1016/j.foodhyd.2005.06.006]
7. Behnam S., Taheri A., Kakoei H. (2010). improvement of lizard fish (saurida tumbil) skin gelatin properties by the coenhancers magnesium sulphate, glycerol, katira, sucrose and ammonium nitrate. Iranian Journal of Food Science and Technology. 7: 21-32.
8. Binsi P.K., Shamasundar B.A., Dileep A.O., Badii F., Howell N.K. (2009). Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocolloids. 23: 132-145. [DOI: 10.1016/j.foodhyd.2007.12.004]
9. Boran G., Regenstein J.M. (2010). Fish gelatin. Advances in Food and Nutrition Research. 60: 119-143. [DOI: 10.1016/S1043-4526(10)60005-8]
10. Cabra V., Arreguin R., Vazquez-Duhalt R., Farres A. (2007). Effect of alkaline deamidation on the structure, surface hydrophobicity, and emulsifying properties of the Z19 α-zein. Journal of Agricultural and Food Chemistry. 55: 439-445. [DOI: 10.1021/jf061002r]
11. Chen X., Fu W., Luo Y., Cui C., Suppavorasatit I., Liang L. (2021). Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Comprehensive Reviews in Food Science and Food Safety. 20: 3788-3817. [DOI: 10.1111/1541-4337.12759]
12. Cheow C.S., Norizah M.S., Kyaw Z.Y., Howell N.K. (2007). Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chemistry. 101: 386-391. [DOI: 10.1016/J.Foodchem.2006.01.046]
13. Cho S., Ahn J-R., Koo J-S, Kim S-B. (2014). Physicochemical properties of gelatin from jellyfish Rhopilema hispidum. Fisheries and Aquatic Sciences. 17: 299-304. [DOI:10.5657/FAS.2014.0299]
14. Cole C.G.B. (2000). Gelatin. Encyclopedia of food science and technology. 2nd Edition. John Wiley and Sons, New York, NY. pp: 1183-1188.
15. Derkach S.R., Kuchina Y.A., Baryshnikov A.V., Kolotova D.S., Voron’ko N.G. (2019). Tailoring cod gelatin structure and physical properties with acid and alkaline extraction. Polymers. 11: 1724. [DOI: 10.3390/polym11101724]
16. Derkach S.R., Voron’ko N.G., Kuchina Y.A. (2022). Intermolecular interactions in the formation of polysaccharide-gelatin complexes: a spectroscopic study. Polymers. 14: 2777. [DOI: 10.3390/polym14142777]
17. Diftis N.G., Pirzas T.A., Kiosseoglou V.D. (2005). Emulsifying properties of gelatin conjugated to pectin under alkaline conditions. Journal of the Science of Food and Agriculture. 85: 804-808. [DOI: 10.1002/jsfa.2029]
18. Djabourov M., Clark A.H., Rowlands D.W., Ross-Murphy S.B. (1989). Small-angle x-ray scattering characterization of agarose sols and gels. Macromolecules. 22: 180-188. [DOI: 10.1021/ma00191a035]
19. Doublier J.-L., Garnier C., Renard D., Sanchez C. (2000). Protein–polysaccharide interactions. Current Opinion in Colloid and Interface Science. 5: 202-214. [DOI: 10.1016/S1359-0294(00)00054-6]
20. Enrione J., Char C., Pepczynska M., Padilla C., González-Muñoz A., Olguín Y., Quinzio C., Iturriaga L., Díaz-Calderón P. (2020). Rheological and structural study of salmon gelatin with controlled molecular weight. Polymers. 12: 1587. [DOI: 10.3390/polym12071587]
21. Foegeding E.A., Davis J.P. (2011). Food protein functionality: a comprehensive approach. Food Hydrocolloids. 25: 1853-1864. [DOI: 10.1016/j.foodhyd.2011.05.008]
22. Hamada J.S., Swanson B. (1994). Deamidation of food proteins to improve functionality. Critical Reviews in Food Science and Nutrition. 34: 283-292. [DOI: 10.1080/10408399409527664]
23. Karim A.A., Bhat R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids. 23: 563-576. [DOI: 10.1016/j.foodhyd.2008.07.002]
24. Koli J.M., Basu S., Venkteshwarlu G., Choukasy M.K., Nayak B.B., (2013). Optimization of fish gelatin extraction from skins and bones: a comparative study. Ecology Environment and Conservation. 19: 47-56.
25. Kumar D.P., Chandra M.V., Elavarasan K., Shamasundar B. (2017). Structural properties of gelatin extracted from croaker fish (Johnius sp) skin waste. International Journal of Food Properties. 20: S2612-S2625. [DOI: 10.1080/10942912.2017.1381702]
26. Liao L., Liu T.-X., Zhao M.-M., Cui C., Yuan B.-E., Tang S.,Yang F. (2010). Functional, nutritional and conformational changes from deamidation of wheat gluten with succinic acid and citric acid. Food Chemistry. 123: 123-130. [DOI: 10.1016/j.foodchem.2010.04.017]
27. Lv L.-C., Huang Q.-Y., Ding W., Xiao X.-H., Zhang H.-Y., Xiong L.-X. ( 2019). Fish gelatin: the novel potential applications. Journal of Functional Foods. 63: 103581. [DOI: 10.1016/j.jff.2019.103581]
28. Mirmoghtadaie L., Kadivar M., Shahedi M. (2009). Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chemistry. 114: 127-131. [DOI: 10.1016/j.foodchem.2008.09.025]
29. Mohajer S., Rezaei M., Hosseini S.F. (2017). Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydrate Polymers. 157: 784-793. [DOI: 10.1016/j.carbpol.2016.10.061]
30. Muyonga J., Cole C.G.B., Duodu K.G. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids. 18: 581-592. [DOI: 10.1016/j.foodhyd.2003.08.009]
31. Nagarajan M., Benjakul S., Prodpran T., Songtipya P., Kishimura H. (2012). Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocolloids. 29: 389-397. [DOI: 10.1016/j.foodhyd.2012.04.001]
32. Norziah M.H., Kee H.Y., Norita M. (2014). Response surface optimization of bromelain-assisted gelatin extraction from surimi processing wastes. Food Bioscience. 5: 9-18. [DOI: 10.1016/j.fbio.2013.10.001]
33. Ohtsuka T., Umezawa Y., Nio N., Kubota K. (2001). Comparison of deamidation activity of transglutaminases. Journal of Food Science. 66: 25-29. [DOI: 10.1111/j.1365-2621.2001.tb15576.x]
34. Paraman I., Hettiarachchy N.S., Schaefer C. (2007). Glycosylation and deamidation of rice endosperm protein for improved solubility and emulsifying properties. Cereal Chemistry. 84: 593-599. [DOI: 10.1094/CCHEM-84-6-0593]
35. Qiu C., Sun W., Cui C., Zhao M. (2013). Effect of citric acid deamidation on in vitro digestibility and antioxidant properties of wheat gluten. Food Chemistry. 141: 2772-2778. [DOI: 10.1016/j.foodchem.2013.05.072]
36. Rawdkuen S., Sai-Ut S., Benjakul S. (2010). Properties of gelatin films from giant catfish skin and bovine bone: a comparative study. European Food Research and Technology. 231: 907-916. [DOI: 10.1007/s00217-010-1340-5]
37. Romero J.B., Villanueva R.D., Montaño M.N.E. (2008). Stability of agar in the seaweed Gracilaria eucheumatoides (Gracilariales, Rhodophyta) during postharvest storage. Bioresource Technology. 99: 8151-8155. [DOI: 10.1016/j.biortech.2008.03.017]
38. Saxena A., Tahir A., Kaloti M., Ali J., Bohidar H.B. (2011). Effect of agar—gelatin compositions on the release of salbutamol tablets. International Journal of Pharmaceutical Investigation. 1: 93-98. [DOI: 10.4103/2230-973X.82407]
39. Sha X.-M., Hu Z.-Z., Ye Y.-H., Xu H., Tu Z.-C. (2019). Effect of extraction temperature on the gelling properties and identification of porcine gelatin. Food Hydrocolloids. 92: 163-172. [DOI:10.1016/j.foodhyd.2019.01.059]
40. Shakila R.J., Jeevithan E., Varatharajakumar A., Jeyasekaran G., Sukumar D. (2012). Functional characterization of gelatin extracted from bones of red snapper and grouper in comparison with mammalian gelatin. LWT-Food Science and Technology. 48: 30-36. [DOI: 10.1016/j.lwt.2012.03.007]
41. Singh S.S., Bohidar H.B., Bandyopadhyay S. (2007). Study of gelatin–agar intermolecular aggregates in the supernatant of its coacervate. Colloids and Surfaces B: Biointerfaces. 57: 29-36. [DOI: 10.1016/j.colsurfb.2006.12.017]
42. Sinthusamran S., Benjakul S., Hemar Y. (2016). Rheological and sensory properties of fish gelatin gels as influenced by agar from Gracilaria tenuistipitata. International Journal of Food Science and Technology. 51: 1530-1536. [DOI: 10.1111/ijfs.13117]
43. Somboon N., Karrila T.T., Kaewmanee T., Karrila S.J. (2014). Properties of gels from mixed agar and fish gelatin. International Food Research Journal. 21: 485.
44. Tabarestani H.S., Maghsoudlou Y., Motamedzadegan A., Sadeghi Mahoonak A.R. (2010). Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss). Bioresource Technology. 101: 6207-6214. [DOI: 10.1016/j.biortech.2010.02.071]
45. Tavakolipour H. (2011). Extraction and evaluation of gelatin from silver carp waste. World Journal of Fish and Marine Sciences. 3: 10-15.
46. Tavernier B.H. (1989). Molecular mass distribution of gelatin and physical properties. Photographic Gelatin Proceedings. 1: 217-228.
47. Toyama Y., Sahara R., Iino Y., Kubota K. (2011). pH dependence of rheological properties of gelatin gel mixed with agar or agarose. Transactions of the Materials Research Society of Japan. 36: 383-386. [DOI: 10.14723/tmrsj.36.383]
48. Tu Z.-C., Huang T., Wang H., Sha X.-M., Shi Y., Huang X.-Q., Man Z.-Z., Li D.-J. (2015). Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology. 52: 2166-2174. [DOI: 10.1007/s13197-013-1239-9]
49. Voron’ko N.G., Derkach S.R., Kuchina Y.A., Sokolan N.I. (2016). The chitosan–gelatin (bio) polyelectrolyte complexes formation in an acidic medium. Carbohydrate Polymers. 138: 265-272. [DOI: 10.1016/j.carbpol.2015.11.059]
50. Wakhet S., Singh V.K., Sahoo S., Sagiri S.S., Kulanthaivel S., Bhattacharya M.K., Kumar N., Banerjee I., Pal K. (2015). Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: a comparative study. Journal of Materials Science: Materials in Medicine. 26: 118. [DOI: 10.1007/s10856-015-5434-2]
51. Wangtueai S., Noomhorm A. (2009). Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Science and Technology. 42: 825-834. [DOI: 10.1016/j.lwt.2008.11.014]
52. Yakimets I., Wellner N., Smith A.C., Wilson R.H., Farhat I., Mitchell J. (2005). Mechanical properties with respect to water content of gelatin films in glassy state. Polymer. 46: 12577-12585. [DOI: 10.1016/j.polymer.2005.10.090]
53. Yarnpakdee S., Benjakul, S., Kingwascharapong P. (2015). Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocolloids. 51: 217-226. [DOI: 10.1016/j.foodhyd.2015.05.004]
54. Zhang F., Xu S., Wang Z. (2011). Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food and Bioproducts Processing. 89: 185-193. [DOI: 10.1016/j.fbp.2010.05.003]
55. Zhou P., Regenstein J.M. (2005). Effects of alkaline and acid pretreatments on Alaska pollock skin gelatin extraction. Journal of Food Science. 70: c392-c396. [DOI: 10.1111/j.1365-2621.2005.tb11435.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb