Volume 11, Issue 3 (September 2024)                   J. Food Qual. Hazards Control 2024, 11(3): 186-196 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tertsegha S, Akubor P, Iordekighir A, Christopher K, Okike O. Extraction and Characterization of Chitosan from Snail Shells (Achatina fulica). J. Food Qual. Hazards Control 2024; 11 (3) :186-196
URL: http://jfqhc.ssu.ac.ir/article-1-1187-en.html
Department of Food Science and Technology, University of Mkar, Benue State , tertseghasandra@gmail.com
Abstract:   (52 Views)
Background: Chitosan due to biodegradable and non-toxic characteristics has versatile applications. Extraction and characterization of Chitosan from Snail Shells In January, 2023 Achatina fulica was performed.
Methods: A chemical process involving demineralization and deproteinization was utilized to extract 2000g Chitin from Achatina fulica shells. To produce chitosan, the chitin was subjected to deacetylation. The chitosan was subsequently characterized using Fourier Transform Infrared spectroscopy, X-ray diffraction, and Scanning Electron Microscopy. The physicochemical charactristics and mineral compositionswere investigated and the data were analyzed using the Statistical Package for Social Sciences (SPSS) software version 20.0.
Results: The chitosan obtained  from the process was 75%. It exhibited a Degree Of Deacetylation of 82.31%, a molecular weight of 2.65×105 g/mol, an intrinsic viscosity of 1,007.2 mg/g, and a solubility of 70%. The pH value of chitosan in acetic acid solution was recorded at 6.38, with a solubility of 70%. The proximate analysis revealed moisture, ash, fat, protein, crude fiber, and carbohydrate contents of 0.32, 0.72, 2.01, 0.13, 0.15, and 96.67%, respectively.The mineral analysis revealed sodium, potassium, calcium, magnesium, phosphorus, iron, and zinc concentrations of 32.10, 21.80, 721, 288.60, 123.75, 41.77, and 8.48 mg/g, respectively. X-ray diffraction analysis identified the region  characterized by the presence of calcite and calcium phosphate, indicating residual minerals in the extracted chitosan, which contribute to its crystalline structure. Fourier Transform Infrared spectroscopy demonstrated  functional groups such as amino and hydroxyl groups, whereas Scanning Electron Microscopy reported an irregular particle size with rough surfaces and a microfibrillar crystalline structure.
Conclusion: The current investigation has the potential to promote the sustainable use of a locally abundant yet underutilized resource, assisting in waste reduction and creation of innovative bioactive materials which could be applied in food preservation, pharmaceuticals, and medical devices.

DOI: 10.18502/jfqhc.11.3.16590
Full-Text [PDF 938 kb]   (40 Downloads)    
Type of Study: Original article | Subject: Special
Received: 24/02/24 | Accepted: 24/08/27 | Published: 24/09/30

References
1. Acosta-Ferreira S., Castillo O.S., Madera-Santana J.T., Mendoza-García D.A., Núñez-Colín C.A., Grijalva-Verdugo C., Villa-Lerma A.G., Morales-Vargas A.T., Rodríguez-Núñez J.R. (2020). Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnology Reports. 28: e00554. [DOI: 10.1016/ j. btre.2020.e00554] [DOI:10.1016/j.btre.2020.e00554] [PMID] [PMCID]
2. Adekanmi A.A., Adekanmi S.A., Adekanmi O.S. (2020). Different processing sequential protocols for extraction, quantification and characterization of chitosan from cray fish. International Journal of Engineering and Information Systems. 4: 47-61.
3. Affes S., Aranaz I., Acosta N., Heras Á., Nasri M., Maalej H. (2021). Chitosan derivatives-based films as pH-sensitive drug delivery systems with enhanced antioxidant and antibacterial properties. International Journal of Biological Macromolecules. 182: 730-742. [DOI: 10.1016/j.ijbiomac. 2021. 04.014] [DOI:10.1016/j.ijbiomac.2021.04.014] [PMID]
4. Alves R., Sabadini R.C., Gonçalves T.S., De Camargo A.S.S., Pawlicka A., Silva M.M. (2019). Structural, morphological, thermal and electrochemical characteristics of chitosan: praseodymium triflate based solid polymer electrolytes. International Journal of Green Energy. 16: 1602-1610. [DOI: 10.1080/15435075. 2019.1677239] [DOI:10.1080/15435075.2019.1677239]
5. Association of Official Analytical Chemists (AOAC). (2019). Official methods of analysis of the association of official analytical chemists: official methods of analysis of AOAC international. 21st edition. AOAC, Washington, DC.
6. Chatterjee S., Hui P.C.-L., Siu W.S., Kan C.-W., Leung P.-C., Wanxue C., Chiou J.-C. (2021). Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. International Journal of Biological Macromolecules. 168: 163-174. [DOI: 10.1016/j. ijbiomac. 2020.12.035] [DOI:10.1016/j.ijbiomac.2020.12.035] [PMID]
7. Chawla S.P., Kanatt S.R., Sharma A.K. (2014). Chitosan. In: Ramawat K., Mérillon J.M. (Editors). Polysaccharides. Springer, Cham, Switzerland. [DOI: 10.1007/978-3-319-03751-6_13-1] [DOI:10.1007/978-3-319-03751-6_13-1]
8. De Queiroz Antonino R.S.C.M., Lia Fook B.R.P., De Oliveira Lima V.A., De Farias Rached R.Í., Lima E.P.N., Da Silva Lima R.J., Covas C.A.P., Lia Fook M.V. (2017). Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Marine Drugs. 15: 141. [DOI: 10.3390/md15050141] [DOI:10.3390/md15050141] [PMID] [PMCID]
9. Facchinatto W.M., Dos Santos D.M., Fiamingo A., Bernardes-Filho R., Campana-Filho S.P., De Azevedo E.R., Colnago L.A. (2020). Evaluation of chitosan crystallinity: a high-resolution solid-state NMR spectroscopy approach. Carbohydrate Polymers. 250: 116891. [DOI: 10.1016/j.carbpol.2020.116891] [DOI:10.1016/j.carbpol.2020.116891] [PMID]
10. Gündüz M.G., Uğur S.B., Güney F., Özkul C., Krishna V.S., Kaya S., Sriram D., Doğan Ş.D. (2020). 1,3-Disubstituted urea derivatives: synthesis, antimicrobial activity evaluation and in silico studies. Bioorganic Chemistry. 102: 104104. [DOI: 10.1016/j.bioorg.2020.104104] [DOI:10.1016/j.bioorg.2020.104104] [PMID]
11. Hasan S., Boddu V.M., Viswanath D.S., Ghosh T.K. (2022). The structural difference between chitin and chitosan. In: Chitin and chitosan. Engineering Materials and Processes. Springer, Cham. pp: 79-102. [DOI: 10.1007/978-3-031-01229-7_4] [DOI:10.1007/978-3-031-01229-7_4]
12. Hossain M.S., Iqbal A. (2014). Production and characterization of chitosan from shrimp waste. Journal of the Bangladesh Agricultural University. 12: 153-160. [DOI: 10.22004/ ag.econ.209911] [DOI:10.3329/jbau.v12i1.21405]
13. Idriss H.O., Seddik N.B., Achache M., Rami S., Zarki Y., Ennamri A., Janoub F., Bouchta D., Chaouket F., Raissouni I. (2024). Shrimp shell waste-modified natural wood and its use as a reservoir of corrosion inhibitor (L-arginine) for brass in 3% NaCl medium: Experimental and theoretical studies. Journal of Molecular Liquids. 398: 124330. [DOI: 10.1016/j. molliq.2024.124330] [DOI:10.1016/j.molliq.2024.124330]
14. Isa M.T., Ameh A.O., Tijjani M., Adama K.K. (2012). Extraction and characterization of chitin and chitosan from Nigerian shrimps. International Journal of Biological and Chemical Sciences. 6: 446-453. [DOI: 10.4314/ijbcs.v6i1.40] [DOI:10.4314/ijbcs.v6i1.40]
15. Kaewboonruang S., Phatrabuddha N., Sawangwong P., Pitaksanurat S. (2016). Comparative studies on the extraction of chitin - chitosan from golden apple snail shells at the control field. Journal of Polymer and Textile Engineering. 3: 34-41. [DOI: 10.9790/019X-03013441]
16. Ke C.-L., Deng F.-S., Chuang C.-Y., Lin C.-H. (2021). Antimicrobial actions and applications of chitosan. Polymers. 13: 904. [DOI: 10.3390/ polym13060904] [DOI:10.3390/polym13060904] [PMID] [PMCID]
17. Khumalo S.M., Bakare B.F., Tetteh E.K., Rathilal S. (2023). Application of response surface methodology on brewery wastewater treatment using chitosan as a coagulant. Water. 15: 1176. [DOI: 10.3390/w15061176] [DOI:10.3390/w15061176]
18. Lam I.L.J., Mohd Affandy M.A., Nur Aqilah N., Vonnie J.M., Felicia W.X.L., Rovina K. (2023). Physicochemical characterization and antimicrobial analysis of vegetal chitosan extracted from distinct forest fungi species. Polymers. 15: 2328. [DOI: 10.3390/polym15102328] [DOI:10.3390/polym15102328] [PMID] [PMCID]
19. Martín-Diana A.B., Rico D., Barat J.M., Barry-Ryan C. (2009). Orange juices enriched with chitosan: optimisation for extending the shelf-life. Innovative Food Science and Emerging Technologies. 10: 590-600. [DOI: 10.1016/j. ifset.2009.05.003] [DOI:10.1016/j.ifset.2009.05.003]
20. Min H., Zhang K., Guo Z., Chi F., Fu L., Li B., Qiao X., Wang S., Cao S., Wang B., Ma Q. (2023). N-rich chitosan- derived porous carbon materials for efficient CO2 adsorption and gas separation. Frontiers in Chemistry. 11: 1333475. [DOI: 10.3389/fchem.2023.1333475] [DOI:10.3389/fchem.2023.1333475] [PMID] [PMCID]
21. Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Rajeevgandhi C., Rajan D.K., Seedevi P. (2019). Extraction and characterization of chitin from sea snail Conus inscriptus (Reeve, 1843). International Journal of Biological Macromolecules. 126: 555-560. [DOI: 10.1016/j. ijbiomac.2018.12.241] [DOI:10.1016/j.ijbiomac.2018.12.241] [PMID]
22. Noriega S., Cardoso-Ortiz J., López-Luna A., Cuevas-Flores M.D.R., Flores De La Torre J.A. (2022). The diverse biological activity of recently synthesized nitro compounds. Pharmaceuticals. 15: 717. [DOI: 10.3390/ ph15060717] [DOI:10.3390/ph15060717]
23. Oladzadabbasabadi N., Mohammadi Nafchi A., Ariffin F., Jeevani Osadee Wijekoon M.M., Al-Hassan A.A., Dheyab M.A., Ghasemlou M. (2022). Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydrate Polymers. 277: 118876. [DOI: 10.1016/j.carbpol.2021.118876] [DOI:10.1016/j.carbpol.2021.118876] [PMID]
24. Olafadehan O.A., Amoo K.O., Ajayi T.O., Bello V.E. (2021). Extraction and characterization of chitin and chitosan from Callinectes amnicola and Penaeus notialis shell wastes. Journal of Chemical Engineering and Materials Science. 12: 1-30. [DOI: 10.5897/JCEMS2020.0353] [DOI:10.5897/JCEMS2020.0353]
25. Oyekunle D.T., Omoleye J.A. (2019). New process for synthesizing chitosan from snail shells. IOP Conference Series: Journal of Physics. 1299: 012089. [DOI: 10.1088/1742-6596/1299/1/ 012089] [DOI:10.1088/1742-6596/1299/1/012089]
26. Parvin N., Kader M.A., Huque R., Molla M.E., Khan M.A. (2018). Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. International Letters of Natural Sciences. 67. 16-23. [DOI: 10.56431/p-75f52p] [DOI:10.56431/p-75f52p]
27. Pham P., Oliver S., Wong E.H.H., Boyer C. (2021). Effect of hydrophilic groups on the bioactivity of antimicrobial polymers. Polymer Chemistry. 12: 5689-5703. [DOI: 10.1039/D1PY01075A] [DOI:10.1039/D1PY01075A]
28. Premasudha P., Vanathi P., Abirami M. (2017). Extraction and characterization of chitosan from crustacean waste: a constructive waste management approach. International Journal of Science and Research. 6: 1194-1198. [DOI: 10.21275/ART20175408] [DOI:10.21275/ART20175408]
29. Puvvada Y.S., Vankayalapati S., Sukhavasi S. (2012). Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. International Current Pharmaceutical Journal. 1: 258-263. [DOI:10.3329/icpj.v1i9.11616]
30. Rajathy T.J., Srinivasan M., Mohanraj T. (2021). Physicochemical and functional characterization of chitosan from horn snail gastropod Telescopium telescopium. Journal of Applied Pharmaceutical Science. 11: 052-058. [DOI: 10.7324/JAPS. 2021.110207] [DOI:10.7324/JAPS]
31. Rajeswari A., Gopi S., Christy E.J.S., Jayaraj K., Pius A. (2020). Current research on the blends of chitosan as new biomaterials. In: Gopi S., Thomas S., Pius A. (Editors). Handbook of chitin and chitosan. Elsevier, Amsterdam, Netherlands. pp: 247-283. [DOI: 10.1016/B978-0-12-817970-3.00009-2] [DOI:10.1016/B978-0-12-817970-3.00009-2]
32. Rosiak P., Latanska I., Paul P., Sujka W., Kolesinska B. (2021). Modification of alginates to modulate their physic-chemical properties and obtain biomaterials with different functional properties. Molecules. 26: 7264. [DOI: 10.3390/ molecules26237264] [DOI:10.3390/molecules26237264]
33. Sayari N., Sila A., Abdelmalek B.E., Abdallah R.B., Ellouz-Chaabouni S., Bougatef A., Balti R. (2016). Chitin and chitosan from the Norway lobster by-products: antimicrobial and anti-proliferative activities. International Journal of Biological Macromolecules. 87: 163-171. [DOI: 10.1016/j. ijbiomac.2016.02. 057] [DOI:10.1016/j.ijbiomac.2016.02.057] [PMID]
34. Sikorski D., Gzyra-Jagieła K., Draczyński Z. (2021). The kinetics of chitosan degradation in organic acid solutions. Marine Drugs. 19: 236. [DOI: 10.3390/md19050236] [DOI:10.3390/md19050236] [PMID] [PMCID]
35. Sultana S., Hossain M.S., Iqbal A. (2020). Comparative characteristics of chitosan extracted from shrimp and crab shell and its application for clarification of pineapple juice. Journal of the Bangladesh Agricultural University. 18: 131-137. [DOI:10.5455/JBAU.73490]
36. Sundalian M., Husein S.G., Putri N.K.D. (2021). Review: analysis and benefit of shells content of freshwater and land snails from gastropods class. Biointerface Research in Applied Chemistry.12: 508-517. [DOI: 10.33263/BRIAC121.508517] [DOI:10.33263/BRIAC121.508517]
37. Tarafdar A., Biswas G. (2013). Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. International Journal of Theoretical and Applied Research Mechanical Engineering. 2: 17-24.
38. Tavares L., Flores E.E.E., Rodrigues R.C., Hertz P.F., Noreña C.P.Z. (2020). Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocolloids. 106: 105876. [DOI: 10.1016/j.foodhyd.2020.105876] [DOI:10.1016/j.foodhyd.2020.105876]
39. Thillai Natarajan S., Kalyanasundaram N., Ravi S. (2017). Extraction and characterization of chitin and chitosan from achatinodes. Natural Products Chemistry and Research. 5: 281. [DOI: 10.4172/2329-6836.1000281] [DOI:10.4172/2329-6836.1000281]
40. Vijayasri K., Tiwari A. (2019). Radiation degraded chitosan: efficiency and investigation of adsorption of arsenic (v) from aqueous solution. Analytical Chemistry Letters. 9: 182-195. [ DOI: 10.1080/22297928.2019.1608855] [DOI:10.1080/22297928.2019.1608855]
41. Wang W., Meng Q., Li Q., Liu J., Zhou M., Jin Z., Zhao K. (2020). Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences. 21: 487. [DOI: 10.3390/ijms21020487] [DOI:10.3390/ijms21020487] [PMID] [PMCID]
42. Yan D., Li Y., Liu Y., Li N., Zhang X., Yan C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules. 26: 7136. [DOI: 10.3390/ molecules26237136] [DOI:10.3390/molecules26237136]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb