Volume 12, Issue 1 (March 2025)                   J. Food Qual. Hazards Control 2025, 12(1): 37-45 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abbasi S, Rafati A, Hosseini S, Roohinejad S, Hahshemi S, Hashemi H. Effects of Environmental Stress on the Viability of Lactobacillus plantarum Encapsulated in Double Emulsions. J. Food Qual. Hazards Control 2025; 12 (1) :37-45
URL: http://jfqhc.ssu.ac.ir/article-1-1188-en.html
Department of Food Science and Technology, Sarv. C., Islamic Azad University, Sarvestan, Iran , alireza_rafati@iau.ac.ir
Abstract:   (287 Views)
Background: The primary objective of encapsulating probiotics is to enhance their survival rate during food processing and the challenging conditions of the gastrointestinal tract.
Methods: In this specific investigation, Lactobacillus plantarum was introduced into the Inner aqueous phase (W1) of Double Emulsions (DEs) referred to as Water-in-Oil-in-Water (W1/O/W2). This entrapment process involved inducing a transition from solid to gel state of W1 using gelatin, alginate, tragacanth gum, and carrageenan across multiple samples. The study then explored the resistance of L. plantarum to various environmental pressures, including thermal treatments (such as pasteurization at 72 °C for 40 s, microwave heating at 72 °C for 40 s, and sterilization at 145 °C for 40 s), as well as exposure to sodium chloride (NaCl), bile salt, lysozyme, and penicillin. Additionally, the viability of the encapsulated probiotics was investigated in simulated gastrointestinal conditions.
Results: It was found that the sensitivity of free bacterial cells to heat processing was significantly higher compared to encapsulated bacteria. Among the different samples, those containing tragacanth gum exhibited the highest cell viability when subjected to various heat treatments (14.67% reduction for microwave, 13.72% reduction for pasteurization). Furthermore, the study demonstrated that DEs effectively improved the survival of probiotics against NaCl, bile salt, lysozyme, and penicillin. Generally, the gastric conditions (0.55 to 3.30 log Colony Forming Unit (CFU)/g reduction) had a more detrimental impact on probiotic viability compared to the intestinal conditions (0.1 to 0.8 log CFU/g reduction).
Conclusion: Ultimately, DE samples containing tragacanth gum in the W1 phase displayed the most effective protective effects. This encapsulation technique holds potential for various applications in dairy, meat, and other fermented products.

DOI: 10.18502/jfqhc.12.1.18365
Full-Text [PDF 536 kb]   (195 Downloads) |   |   Full-Text (HTML)  (88 Views)  
Type of Study: Original article | Subject: Special
Received: 24/08/20 | Accepted: 25/03/02 | Published: 25/03/30

References
1. Abbasi S., Rafati A., Hosseini S.M.H., Roohinejad S., Hashemi S.S., Hashemi Gahruie H., Rashidinejad A. (2023). The internal aqueous phase gelation improves the viability of probiotic cells in a double water/oil/water emulsion system. Food Science and Nutrition. 5978-5988. [DOI: 10.1002/fsn3.3532] [DOI:10.1002/fsn3.3532] [PMID] [PMCID]
2. Allain T., Chaouch S., Thomas M., Vallée I., Buret A.G., Langella P., Grellier P., Polack B., Bermudez-Humaran L.G., Florent I. (2018). Bile-salt-hydrolases from the probiotic strain Lactobacillus johnsonii La1 mediate anti-giardial activity in vitro and in vivo. Frontiers in Microbiology. 8: 2707. [DOI: 10.3389/fmicb.2017.02707] [DOI:10.3389/fmicb.2017.02707] [PMID] [PMCID]
3. Anselmo A.C., McHugh K.J., Webster J., Langer R., Jaklenec A. (2016). Layer‐by‐layer encapsulation of probiotics for delivery to the microbiome. Advanced Materials. 28: 9486-9490. [DOI: 10.1002/adma.201603270] [DOI:10.1002/adma.201603270] [PMID] [PMCID]
4. Balcaen M., Vermeir L., Declerck A., Van Der Meeren P. (2016). Influence of internal water phase gelation on the shear-and osmotic sensitivity of W/O/W-type double emulsions. Food Hydrocolloids. 58: 356-363. [DOI: 10.1016/j.foodhyd. 2016.03.011] [DOI:10.1016/j.foodhyd.2016.03.011]
5. Berendsen R., Güell C., Ferrando M. (2015). A procyanidin-rich extract encapsulated in water-in-oil-in-water emulsions produced by premix membrane emulsification. Food Hydrocolloids. 43: 636-648. [DOI: 10.1016/j.foodhyd.2014.07.023] [DOI:10.1016/j.foodhyd.2014.07.023]
6. Bou R., Cofrades S., Jiménez-Colmenero F. (2014). Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. LWT-Food Science and Technology. 59: 621-628. [DOI: 10.1016/j.lwt.2014.06.044] [DOI:10.1016/j.lwt.2014.06.044]
7. Chandramouli V., Kailasapathy K., Peiris P., Jones M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods. 56: 27-35. [DOI: 10.1016/j.mimet.2003.09.002] [DOI:10.1016/j.mimet.2003.09.002] [PMID]
8. Chen M.-J., Tang H.-Y., Chiang M.-L. (2017). Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiology. 66: 20-27. [DOI: 10.1016/j.fm.2017.03.020] [DOI:10.1016/j.fm.2017.03.020] [PMID]
9. Cofrades S., Antoniou I., Solas M.T., Herrero A.M., Jiménez-Colmenero F. (2013). Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chemistry. 141: 338-346. [DOI: 10.1016/j.foodchem.2013.02.097] [DOI:10.1016/j.foodchem.2013.02.097] [PMID]
10. Coghetto C.C., Brinques G.B., Siqueira N.M., Pletsch J., Soares R.M.D., Ayub M.A.Z. (2016). Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods. 24: 316-326. [DOI: 10.1016/j.jff.2016.03.036] [DOI:10.1016/j.jff.2016.03.036]
11. De Almeida Paula D., Martins E.M.F., De Almeida Costa N., De Oliveira P.M., De Oliveira E.B., Ramos A.M. (2019). Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. International Journal of Biological Macromolecules. 133: 722-731. [DOI: 10.1016/j.ijbiomac.2019.04.110] [DOI:10.1016/j.ijbiomac.2019.04.110] [PMID]
12. Dianawati D., Mishra V., Shah N.P. (2013). Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by fourier transform infrared and differential scanning calorimetry. Journal of Dairy Science. 96: 1419-1430. [DOI: 10.3168/jds.2012-6058] [DOI:10.3168/jds.2012-6058] [PMID]
13. El-Dieb S.M., Abd Rabo F.H.R., Badran S.M., Abd El-Fattah A.M., Elshaghabee F.M.F. (2012). The growth behaviour and enhancement of probiotic viability in bioyoghurt. International Dairy Journal. 22: 44-47. [DOI: 10.1016/j.idairyj.2011.08.003] [DOI:10.1016/j.idairyj.2011.08.003]
14. El Kadri H., Lalou S., Mantzouridou F., Gkatzionis K. (2018). Utilisation of water-in-oil-water (W1/O/W2) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei. Food Research International. 107: 325-336. [DOI: 10.1016/j.foodres.2018.02.049] [DOI:10.1016/j.foodres.2018.02.049] [PMID]
15. Frakolaki G., Giannou V., Kekos D., Tzia C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition. 61: 1515-1536. [DOI: 10.1080/ 10408398.2020.1761773] [DOI:10.1080/10408398.2020.1761773] [PMID]
16. Frank K., Walz E., Gräf V., Greiner R., Köhler K., Schuchmann H.P. (2012). Stability of anthocyanin-rich W/O/W‐emulsions designed for intestinal release in gastrointestinal environment. Journal of Food Science. 77: N50-N57. [DOI: 10.1111/j.1750-3841.2012.02982.x] [DOI:10.1111/j.1750-3841.2012.02982.x] [PMID]
17. Giroux H.J., Constantineau S., Fustier P., Champagne C.P., St-Gelais D., Lacroix M., Britten M. (2013). Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. International Dairy Journal. 29: 107-114. [DOI: 10.1016/j.idairyj.2012.10.009] [DOI:10.1016/j.idairyj.2012.10.009]
18. Hernández-Gómez J.G., López-Bonilla A., Trejo-Tapia G., Ávila-Reyes S.V., Jiménez-Aparicio A.R., Hernández-Sánchez H. (2021). In vitro bile salt hydrolase (BSH) activity screening of different probiotic microorganisms. Foods. 10: 674-684. [DOI: 10.3390/foods10030674] [DOI:10.3390/foods10030674] [PMID] [PMCID]
19. Hernández-Rodríguez L., Lobato-Calleros C., Pimentel-González D.J., Vernon-Carter E.J. (2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids. 36: 181-188. [DOI: 10.1016/j.foodhyd.2013.09.018] [DOI:10.1016/j.foodhyd.2013.09.018]
20. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., Calder P.C., Sanders M.E. (2014). Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology. 11: 506-514. [DOI: 10.1038/nrgastro.2014.66] [DOI:10.1038/nrgastro.2014.66] [PMID]
21. Hosseinialhashemi M., Tavakoli J., Rafati A., Ahmadi F. (2021). The aplication of Pistacia khinjuk extract nanoemulsion in a biopolymeric coating to improve the shelf life extension of sunflower oil. Food Science and Nutrition. 9: 920-928. [DOI: 10.1002/fsn3.2057] [DOI:10.1002/fsn3.2057] [PMID] [PMCID]
22. Irani M., Rafati A., Hashemi S.S., Barba F.J., Koubaa M., Roohinejad S. (2021). Biomass fractionation using emerging technologies. In: Koubaa M., Barba F.J., Roohinejad S. (Editors). Fermentation processes: emerging and conventional technologies. John Wiley and Sons Ltd., New Jersey, U.S. pp: 145-169. [DOI: 10.1002/9781119505822.ch5] [DOI:10.1002/9781119505822.ch5]
23. Jiménez-Colmenero F. (2013). Potential applications of multiple emulsions in the development of healthy and functional foods. Food Research International. 52: 64-74. [DOI: 10.1016/j.foodres.2013.02.040] [DOI:10.1016/j.foodres.2013.02.040]
24. Kim W.S., Perl L., Park J.H., Tandianus J.E., Dunn N.W. (2001). Assessment of stress response of the probiotic Lactobacillus acidophilus. Current Microbiology. 43: 346-350. [DOI: 10.1007/s002840010314] [DOI:10.1007/s002840010314] [PMID]
25. Koubaa M., Nikmaram N., Roohinejad S., Rafati A., Greiner R. (2018a). Multilayered emulsions. In: Roohinejad S., Greiner R., Oey I., Wen J. (Editors). Emulsion-based systems for delivery of food active compounds: formation, application, health and safety. John Wiley and Sons Ltd., New Jersey, U.S. pp: 105-119. [DOI: 10.1002/9781119247159.ch4] [DOI:10.1002/9781119247159.ch4]
26. Koubaa M., Roohinejad S., Sharma P., Nikmaram N., Hashemi S.S., Abbaspourrad A., Greiner R. (2018b). Multiple emulsions. In: Roohinejad S., Greiner R., Oey I., Wen J. (Editors). Emulsion‐based systems for delivery of food active compounds: formation, application, health and safety. John Wiley and Sons Ltd., New Jersey, U.S. pp: 69-103. [DOI: 10.1002/9781119247159.ch3] [DOI:10.1002/9781119247159.ch3]
27. Krasaekoopt W., Bhandari B., Deeth H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal. 14: 737-743. [DOI: 10.1016/j.idairyj.2004.01.004] [DOI:10.1016/j.idairyj.2004.01.004]
28. Lee K.-Y., Heo T.-R. (2000). Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Applied and Environmental Microbiology. 66: 869-873. [DOI: 10.1128/AEM.66.2.869-873.2000] [DOI:10.1128/AEM.66.2.869-873.2000] [PMID] [PMCID]
29. Liu H., Cui S.W., Chen M., Li Y., Liang R., Xu F., Zhong F. (2019). Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: a review. Critical Reviews in Food Science and Nutrition. 59: 2863-2878. [DOI: 10.1080/10408398.2017.1377684] [DOI:10.1080/10408398.2017.1377684] [PMID]
30. Mandal S., Puniya A., Singh K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal. 16: 1190-1195. [DOI: 10.1016/j.idairyj.2005.10.005] [DOI:10.1016/j.idairyj.2005.10.005]
31. Manojlović V., Nedović V.A., Kailasapathy K., Zuidam N.J. (2010). Encapsulation of probiotics for use in food products. In: Zuidam N., Nedovic V. (Editors). Encapsulation technologies for active food ingredients and food processing. Springer, New York, NY. pp: 269-302. [DOI: 10.1007/978-1-4419-1008-0_10] [DOI:10.1007/978-1-4419-1008-0_10]
32. Moayyedi M., Eskandari M.H., Rad A.H.E., Ziaee E., Khodaparast M.H.H., Golmakani M.-T. (2018). Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of Functional Foods. 40: 391-399. [DOI: 10.1016/j.jff.2017.11.016] [DOI:10.1016/j.jff.2017.11.016]
33. Mohammadi-Gouraji E., Sheikh-Zeinoddin M., Soleimanian-Zad S. (2017). Effects of Persian gum and gum Arabic on the survival of Lactobacillus plantarum PTCC 1896, Escherichia coli, Xanthomonas axonopodis, and Saccharomyces cerevisiae during freeze drying. British Food Journal. 119: 331-341. [DOI: 10.1108/BFJ-09-2016-0442] [DOI:10.1108/BFJ-09-2016-0442]
34. Nag A. (2011). Development of a microencapsulation technique for probiotic bacteria Lactobacillus casei 431 using a protein-polysaccharide complex. The degree of masters of technology in Food Technology thesis. Massey University, Palmerston North, New Zealand.
35. Oppermann A., Renssen M., Schuch A., Stieger M., Scholten E. (2015). Effect of gelation of inner dispersed phase on stability of (W1/O/W2) multiple emulsions. Food Hydrocolloids. 48: 17-26. [DOI: 10.1016/j.foodhyd.2015.01.027] [DOI:10.1016/j.foodhyd.2015.01.027]
36. Ortakci F., Broadbent J.R., McManus W., McMahon D. (2012). Survival of microencapsulated probiotic Lactobacillus paracasei LBC-1e during manufacture of mozzarella cheese and simulated gastric digestion. Journal of Dairy Science, 95: 6274-6281, [DOI: 10.3168/jds.2012-5476] [DOI:10.3168/jds.2012-5476] [PMID]
37. Peighambardoust S., Tafti A.G., Hesari J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review. Trends in Food Science and Technology. 22: 215-224. [DOI: 10.1016/j.tifs.2011.01.009] [DOI:10.1016/j.tifs.2011.01.009]
38. Pimentel-González D.J, Campos-Montiel R.G, Lobato-Calleros C., Pedroza-Islas R., Vernon-Carter, E.J. (2009). Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Research International. 42: 292-297. [DOI: 10.1016/j.foodres.2008.12.002] [DOI:10.1016/j.foodres.2008.12.002]
39. Rodríguez-Huezo M.E, Estrada-Fernández A.G, García-Almendárez B.E, Ludena-Urquizo F., Campos-Montiel R.G, Pimentel-González D.J. (2014). Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT-Food Science and Technology. 59: 768-773. [DOI: 10.1016/ j.lwt.2014.07.004] [DOI:10.1016/j.lwt.2014.07.004]
40. Schuch A., Wrenger J., Schuchmann H.P. (2014). Production of W/O/W double emulsions. part II: influence of emulsification device on release of water by coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 461: 344-351. [DOI: 10.1016/j.colsurfa.2013.11.044] [DOI:10.1016/j.colsurfa.2013.11.044]
41. Shima M., Matsuo T., Yamashita M., Adachi S. (2009). Protection of Lactobacillus acidophilus from bile salts in a model intestinal juice by incorporation into the inner-water phase of a W/O/W emulsion. Food Hydrocolloids. 23: 281-285. [DOI: 10.1016/j.foodhyd.2008.01.008] [DOI:10.1016/j.foodhyd.2008.01.008]
42. Shima M., Morita Y., Yamashita M., Adachi S. (2006). Protection of Lactobacillus acidophilus from the low pH of a model gastric juice by incorporation in a W/O/W emulsion. Food Hydrocolloids. 20: 1164-1169. [DOI: 10.1016/j.foodhyd. 2006.01.001] [DOI:10.1016/j.foodhyd.2006.01.001]
43. Singhal N., Maurya A.K., Mohanty S., Kumar M., Virdi J.S. (2019). Evaluation of bile salt hydrolases, cholesterol-lowering capabilities, and probiotic potential of Enterococcus faecium isolated from rhizosphere. Frontiers in Microbiology. 10: 1567. [DOI: 10.3389/fmicb.2019.01567] [DOI:10.3389/fmicb.2019.01567] [PMID] [PMCID]
44. Soltani Lak A., Marhamatizadeh M.H., Fattahi H. (2021). Stability of encapsulated Lactobacillus reuteri during harsh conditions, storage period, and simulated in vitro conditions. Journal of Food Quality. 2021: 3872190. [DOI: 10.1155/2021/3872190] [DOI:10.1155/2021/3872190]
45. Song H., Yu W., Gao M., Liu X., Ma X. (2013). Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate Polymers. 96: 181-189. [DOI: 10.1016/j.carbpol.2013.03.068] [DOI:10.1016/j.carbpol.2013.03.068] [PMID]
46. Sousa S., Gomes A.M., Pintado M.M., Silva J.P., Costa P., Amaral M.H., Duarte A.C., Rodrigues D., Rocha-Santos T.A.P., Freitas A.C. (2015). Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food and Bioproducts Processing. 93: 90-97. [DOI: 10.1016/ j.fbp.2013.11.007] [DOI:10.1016/j.fbp.2013.11.007]
47. Tantratian S., Pradeamchai M. (2020). Select a protective agent for encapsulation of Lactobacillus plantarum. LWT. 123: 109075. [DOI: 10.1016/j.lwt.2020.109075] [DOI:10.1016/j.lwt.2020.109075]
48. Wang L., Song M., Zhao Z., Chen X., Cai J., Cao Y., Xiao J. (2020). Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. LWT. 121: 108928. [DOI: 10.1016/j.lwt.2019.108928] [DOI:10.1016/j.lwt.2019.108928]
49. Weinbreck F., Bodnár I., Marco M.L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products?. International Journal of Food Microbiology. 136: 364-367. [DOI: 10.1016/j.ijfoodmicro.2009.11.004] [DOI:10.1016/j.ijfoodmicro.2009.11.004] [PMID]
50. Zanjani M.A.K., Ehsani M.R., Ghiassi Tarzi B., Sharifan A. (2018). Promoting Lactobacillus casei and Bifidobacterium adolescentis survival by microencapsulation with different starches and chitosan and poly L‐lysine coatings in ice cream. Journal of Food Processing and Preservation. 42: e13318. [DOI: 10.1111/jfpp.13318] [DOI:10.1111/jfpp.13318]
51. Zhang L., Taal M.A., Boom R.M., Chen X.D., Schutyser M.A.I. (2018). Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread. LWT. 87: 318-325. [DOI: 10.1016/j.lwt.2017.09.005] [DOI:10.1016/j.lwt.2017.09.005]
52. Zhang Y., Lin J., Zhong Q. (2015). The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Research International. 71: 9-15. [DOI: 10.1016/j.foodres. 2015.02.017] [DOI:10.1016/j.foodres.2015.02.017]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb