Volume 11, Issue 4 (December 2024)                   J. Food Qual. Hazards Control 2024, 11(4): 280-290 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mall D, Patel V, Subhash R. Conventional and Molecular Characterization Based Microbial Assessment of Street Vended (Vada pav) Samples from Anand City, Gujarat, India. J. Food Qual. Hazards Control 2024; 11 (4) :280-290
URL: http://jfqhc.ssu.ac.ir/article-1-1210-en.html
Post Graduate Department of Home Science, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India , patelvh2004@yahoo.co.in
Abstract:   (139 Views)
Background: Street foods offer convenient meal options for the consumer, but pose safety concerns if not handled or served with proper hygiene. The purpose of the present study was the microbial evaluation of street vended Vada pav samples sold at popular locations in Anand city using the conventional culture technique and molecular characterization via Polymerase Chain Reaction.
Methods: Duplicate samples were collected from seven different locations (n=14) across five zones: East (2), West (1), North (1), South (1), and Central (2) during June 2023. Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella spp. were isolated and identified. For the microbial screening, bacterial enumeration, colony morphology, Gram's reaction, and biochemical characterization were performed. Amplification of nuc (S. aureus), nheA (B. cereus), phoA (E. coli), and 16S rRNA (Salmonella spp.) genes were carried out via Polymerase Chain Reaction assay. 
Results: Total Viable Count (TVC) ranged from 3.93 to 6.08 log Colony Forming Units (CFU)/g while the Yeast and Mold Counts ranged from 2.30 to 4.28 log CFU/g. Using the conventional culture technique, the prevalence of S. aureus, B. cereus, and E. coli were found to be 3/14, 2/14, and 3/14, respectively; whereas based on molecular characterization, the prevalence was 0/14, 2/14, and 3/14, respectively. Salmonella spp. was not detected in any of the samples.
Conclusion: The study indicates a potential health hazard for consumers due to microbial contamination of street vended Vada pav samples. Consequently, it is crucial to regulate and improve hygienic practices in street food vendors.

DOI: 10.18502/jfqhc.11.4.17446
Full-Text [PDF 561 kb]   (48 Downloads)    
Type of Study: Original article | Subject: Special
Received: 24/03/31 | Accepted: 24/11/10 | Published: 24/12/30

References
1. Abdulkareem L., Garba D., Abubakar A. (2014). A study of cleanliness and sanitary practices of street food vendors in Northern Nigeria. Advances in Food Science and Technology. 2: 209-215.
2. Abdulrahman R.F. (2020). Detection of Staphylococcus aureus from local and imported chicken in Duhok province/Kurdistan region of Iraq using conventional and molecular methods. Basrah Journal of Veterinary Research. 19: 134-146. [DOI:10.23975/bjvetr.2020.170618]
3. Adhikari S., Sharma Regmi R., Sapkota S., Khadka S., Patel N., Gurung S., Thapa D., Bhattarai P., Sapkota P., Devkota R., Ghimire A., Rijal K.R. (2023). Multidrug resistance, biofilm formation and detection of blaCTX-M and blaVIM genes in E. coli and Salmonella isolates from chutney served at the street-food stalls of Bharatpur, Nepal. Heliyon. 9: e15739. [DOI: 10.1016/j.heliyon.2023.e15739]. [DOI:10.1016/j.heliyon.2023.e15739] [PMID] [PMCID]
4. Al-Ashmawy M.A., Sallam K.I., Abd-Elghany S.M., Elhadidy M., Tamura T. (2016). Prevalence, molecular characterization, and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolated from milk and dairy products. Foodborne Pathogens and Disease. 13: 156-162. [DOI: 10.1089/fpd.2015.2038] [DOI:10.1089/fpd.2015.2038] [PMID]
5. Alelign D., Yihune M., Bekele M., Oumer Y., Beyene K., Atnafu K. (2023). Bacteriological quality and antimicrobial resistant patterns of foodborne pathogens isolated from commonly vended street foods in Arba Minch town, Southern Ethiopia. Infection and Drug Resistance. 16: 2883-2899. [DOI: 10.2147/ IDR.S411162] [DOI:10.2147/IDR.S411162] [PMID] [PMCID]
6. Asiegbu C.V., Lebelo S.L., Tabit F.T. (2020). Microbial quality of ready-to-eat street vended food groups sold in the Johannesburg metropolis, South Africa. Journal of Food Quality and Hazards Control. 7: 18-26. [DOI: 10.18502/JFQHC.7.1.2448] [DOI:10.18502/jfqhc.7.1.2448]
7. Bezerra A.C.D., Reis R.B.D., Bastos D.H.M. (2010). Microbiological quality of hamburgers sold in the streets of Cuiabá-MT, Brazil, and vendor hygiene-awareness. Food Science and Technology. 30: 520-524. [DOI:10.1590/S0101-20612010000200035] [DOI:10.1590/S0101-20612010000200035]
8. Bhutia M.O., Thapa N., Tamang J.P. (2021). Prevalence of enterotoxin genes and antibacterial susceptibility pattern of pathogenic bacteria isolated from traditionally preserved fish products of Sikkim, India. Food Control. 125: 108009. [DOI: 10.1016/j.foodcont.2021.108009] [DOI:10.1016/j.foodcont.2021.108009]
9. Braz V.S., Melchior K., Moreira C.G. (2020). Escherichia coli as a multifaceted pathogenic and versatile bacterium. Frontiers in Cellular and Infection Microbiology. 10: 548492. [DOI: 10.3389/fcimb.2020.548492] [DOI:10.3389/fcimb.2020.548492] [PMID] [PMCID]
10. Budiarso T.Y., Prihatmo G., Restiani R., Pakpahan S., Sari L. (2019). Detection of Staphylococcus aureus producing enterotoxin A on the skewers meatballs product in Yogyakarta City, Indonesia. Journal of Physics: Conference Series. 1397: 012044. [DOI: 10.1088/1742-6596/1397/1/012044] [DOI:10.1088/1742-6596/1397/1/012044]
11. Centre for Food Safety (CFS). (2014). Microbiological guidelines for food (for ready-to-eat food in general and specific food items). Food and Environmental Hygiene Department. Queensway, Hong Kong. URL: https://www.cfs.gov.hk/english/ food_leg/ files/food_leg_Microbiological_Guidelines_for_Food_e.pdf. Accessed 12 January 2024.
12. Chumber S.K., Kaushik K., Savy S. (2007). Bacteriological analysis of street foods in Pune. Editorial Board. 51: 83-136.
13. Eid H., El-Tabiy A., Fathy S. (2019). Molecular characterization of Escherichia coli isolated from meat and meat products in Port-Said markets. Suez Canal Veterinary Medical Journal. 24: 177-188. [DOI: 10.21608/SCVMJ.2019.69840] [DOI:10.21608/scvmj.2019.69840]
14. Fisher E.L., Otto M., Cheung G.Y.C. (2018). Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Frontiers in Microbiology. 9: 436. [DOI: 10.3389/fmicb.2018.00436] [DOI:10.3389/fmicb.2018.00436] [PMID] [PMCID]
15. Foddai A.C., Grant I.R. (2020). Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Applied Microbiology and Biotechnology. 104: 4281-4288. [DOI: 10.1007/s00253-020-10542-x] [DOI:10.1007/s00253-020-10542-x] [PMID] [PMCID]
16. Food Safety and Standards Authority of India (FSSAI). (2021). Guidelines for investigating and managing food-borne illness outbreaks in India. URL: https://fssai.gov.in/upload/advisories/2021/10/6177ebdb6d980Direction_Food_Bourne_Illness_26_10_2021.pdf. Accessed 22 February 2024.
17. Food Safety and Standards Authority of India (FSSAI). (2023). Microbiological standards of food grain products. URL: https://www.fssai.gov.in/upload/uploadfiles/files/20_%20Appendix%20B.pdf. Accessed 12 January 2024.
18. Food Standards Australia New Zealand (FSANZ). (2023). Agents of foodborne illness. Salmonella (non-typhoidal). Australian Government's Health, Canberra, Australia. URL: https://www.foodstandards.gov.au/publications/agents-foodborne-illness. Accessed 22 February 2024.
19. Hefny A., Mohamed H.M., Etokhy E.I., Abd El-Azeem M.W. (2020). Characterization of Bacillus cereus isolated from raw milk and milk products. Journal of Veterinary and Animal Research. 3: 205.
20. Hegab O.W., Abdel-Latif E.F., Moawad A.A. (2020). Isolation of enterotoxigenic Staphylococcus aureus harboring seb gene and enteropathogenic Escherichia coli (Serogroups O18, O114, and O125) from soft and hard artisanal cheeses in Egypt. Open Veterinary Journal. 10: 297-307. [DOI: 10.4314/ovj.v10i3.8] [DOI:10.4314/ovj.v10i3.8] [PMID] [PMCID]
21. Hirani D.R. (2019). Bacteriological analysis of street vended food panipuri in Mumbai Metropolitan Region. International Journal of Current Microbiology and Applied Sciences. 8: 115-121. [DOI: 10.20546/ijcmas.2019.811.014] [DOI:10.20546/ijcmas.2019.811.014]
22. Hu Q., Tu J., Han X., Zhu Y., Ding C., Yu S. (2011). Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli and Salmonella enterica simultaneously from ducks. Journal of Microbiological Methods. 87: 64-69. [DOI: 10.1016/j.mimet.2011.07.007] [DOI:10.1016/j.mimet.2011.07.007] [PMID]
23. Ibal J.C., Pham H.Q., Park C.E., Shin J.H. (2019). Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification. PLoS One. 14: e0212090. [DOI: 10.1371/journal.pone.0212090] [DOI:10.1371/journal.pone.0212090] [PMID] [PMCID]
24. Jotangiya D. (2018). Microbial assessment of hotdog-A popular street food of India and its comparison with homemade food. International Journal of Applied Home Science. 5: 343-346.
25. Kim J.H., Jung S., Oh S.W. (2020). Combination of bacteria concentration and DNA concentration for rapid detection of E. coli O157, L. monocytogenes, and S. Typhimurium without microbial enrichment. LWT. 117: 108609. [DOI: 10.1016/j.lwt.2019.108609] [DOI:10.1016/j.lwt.2019.108609]
26. Kumar T.D.K., Murali H.S., Batra H.V. (2009). Simultaneous detection of pathogenic B. cereus, S. aureus, and L. monocytogenes by multiplex PCR. Indian Journal of Microbiology. 49: 283-289. [DOI: 10.1007/s12088-009-0032-y] [DOI:10.1007/s12088-009-0032-y] [PMID] [PMCID]
27. Likhitha P., Nayak J.B., Thakur S. (2022). Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail buffalo meat in Anand, India. The Pharma Innovation. 11: 17-20.
28. Liu C., Yu P., Yu S., Wang J., Guo H., Zhang Y., Zhang J., Liao X., Li C., Wu S., Gu Q., Zeng H., et al. (2020). Assessment and molecular characterization of Bacillus cereus isolated from edible fungi in China. BMC Microbiology. 20: 310. [DOI: 10.1186/s12866-020-01996-0] [DOI:10.1186/s12866-020-01996-0] [PMID] [PMCID]
29. Luo S., Liao C., Peng J., Tao S., Zhang T., Dai Y., Ding Y., Ma Y. (2023). Resistance and virulence gene analysis and molecular typing of Escherichia coli from duck farms in Zhanjiang, China. Frontiers in Cellular and Infection Microbiology. 13: 1202013. [DOI: 10.3389/fcimb.2023.1202013] [DOI:10.3389/fcimb.2023.1202013] [PMID] [PMCID]
30. Mandal S., Mandal S. (2018). Multiple antibiotic resistance indices of potential pathogenic bacteria isolated from street vended fruit and sugarcane juices, Malda Town, India. Acta Scientific Pharmaceutical Sciences. 2:89-96.
31. Mehta H.D., Saradava D.A., Mehta D.N (2020). Bacteriological analysis and hygiene of street food panipuri: A case study of Morbi City-Gujarat, India. Indian Journal of Pure and Applied Biosciences. 8: 313-317. [DOI: 10.18782/2582-2845.8224] [DOI:10.18782/2582-2845.8224]
32. Mohammed A.S., Shehasen M.Z. (2020). Street food consumption and associated health risk. International Journal of Research Studies in Agricultural Sciences. 6: 8-18. [DOI: 10.20431/2454-6224.0607002] [DOI:10.20431/2454-6224.0607002]
33. Muhammad Muhammad S., Ibrahim Galadima S. (2022). Determination of microbiological quality of bread and sanitation conditions of local bakeries in Aliero Town, Kebbi State. Applied Science and Technology Research Journal. 1: 1-9. [DOI: 10.31316/astro.v1i2.4274] [DOI:10.31316/astro.v1i2.4274]
34. Nyabundi D., Onkoba N., Kimathi R., Nyachieo A., Juma G., Kinyanjui P., Kamau J. (2017). Molecular characterization and antibiotic resistance profiles of Salmonella isolated from fecal matter of domestic animals and animal products in Nairobi. Tropical Diseases, Travel Medicine and Vaccines. 3:2. [DOI: 10.1186/s40794-016-0045-6] [DOI:10.1186/s40794-016-0045-6] [PMID] [PMCID]
35. Patel R.J., Patel K.R. (2016). Experimental Microbiology. Aditya, India.
36. Prevolsek V., Ovca A., Jevšnik M. (2021). Fulfillment of technical and hygienic requirements among street food vendors in Slovenia. British Food Journal. 123: 105-123. [DOI: 10.1108/BFJ-11-2020-1056] [DOI:10.1108/BFJ-11-2020-1056]
37. Pui C.F., Wong W.C., Chai L.C., Nillian E., Ghazali F.M., Cheah Y.K., Radu S. (2011). Simultaneous detection of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium in sliced fruits using multiplex PCR. Food Control. 22: 337-342. [DOI: 10.1016/j.foodcont.2010.05.021] [DOI:10.1016/j.foodcont.2010.05.021]
38. Rajabi Z., M onadi Sefidan A., Zarebavani M., Sharifi Yazdi.S., Torabi Bonab P., Mirbagheri S.Z., Soltan-Dallal M.M. (2023). Investigation of enterotoxin-producing genes (sea, seb, sec, and sed) in Staphylococcus aureus isolated from raw traditionally and pasteurized milk supplied in Tehran, Iran. Journal of Food Quality and Hazards Control. 10: 221-225. [DOI: 10.18502/jfqhc.10.4.14180] [DOI:10.18502/jfqhc.10.4.14180]
39. Rane S. (2011). Street vended food in developing world: Hazard analyses. Indian Journal of Microbiology. 51: 100-106. [DOI: 10.1007/s12088-011-0154-x] [DOI:10.1007/s12088-011-0154-x] [PMID] [PMCID]
40. Sharma D., Modgil R., Sandal A. (2020). Total viable microbial count of the selected street foods obtained from Palampur, India. Journal of Food Safety and Hygiene. 6: 47-52. [DOI: 10.18502/jfsh.v6i1.6026] [DOI:10.18502/jfsh.v6i1.6026]
41. Sheth M., Gurudasani R., Mudbidri R. (2005). Screening for pathogenic microorganisms in street-vended bhelpuri in urban Vadodara: a HACCP approach. Journal of Food Science and Technology (Mysore). 42: 395-399.
42. Solanki D.G., Dave N.R. (2012). Nutritional and hygienic assessment of pizza sold by small vendors in Rajkot city and its comparison with homemade sample. Asian Journal of Home Science. 7: 31-34.
43. Solomon H. (2015). "The taste no chef can give": Processing street food in Mumbai. Cultural Anthropology. 30: 65-90. [DOI: 10.14506/ca30.1.05] [DOI:10.14506/ca30.1.05]
44. Tewari A., Singh S.P., Singh R. (2015). Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. Journal of Food Science and Technology. 52: 1796-1801. [DOI: 10.1007/s13197-013-1162-0] [DOI:10.1007/s13197-013-1162-0] [PMID] [PMCID]
45. Thakur S., Brahmbhatt M., Chaudhary J., Parmar B., Mistry U., Bhong C. (2020). Comparison of loop-mediated isothermal amplification with polymerase chain reaction for detection of methicillin-resistant Staphylococcus aureus in chevon. Journal of Entomology and Zoology Studies. 8: 1976-1980. [DOI: 10.22271/j.ento.2020.v8.i6aa.8111] [DOI:10.22271/j.ento.2020.v8.i6aa.8111]
46. United Kingdom Health Security Agency (UKHSA). (2024), Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. URL: https://assets.publishing. service.gov.uk/media/66debd72e87ad2f1218265e1/UKHSA-ready-to-eat-guidelines-2024.pdf. Accessed 17 January 2024.
47. World Health Organization (WHO). (2022). WHO global strategy for food safety 2022-2030: towards stronger food safety systems and global cooperation. World Health Organization. https://www. who.int/news-room/fact-sheets/detail/food-safety. Accessed 22 February 2024.
48. Yogesh M., Venkat Reddy D., Lahari Reddy K., Sri Mahitha G., Krishnaiah N. (2019). Studies on the microbiological quality of burgers sold in and around Greater Hyderabad Municipal Corporation. The Pharma Innovation Journal. 8: 264-268.
49. Zhao L., Wang J., Chen M., Sun X., Wang Y., Wang J., Geng Y. (2022). Development and application of recombinase polymerase amplification assays for rapid detection of Escherichia coli O157 in food. Food Analytical Methods. 15: 1843-1850. [DOI: 10.1007/s12161-022-02250-1] [DOI:10.1007/s12161-022-02250-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb