Volume 11, Issue 4 (December 2024)                   J. Food Qual. Hazards Control 2024, 11(4): 263-271 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Banjo T, Malomo R. The Potential of Beeswax Coating in the Preservation of Tomato (Solanum lycopersicum) Fruits. J. Food Qual. Hazards Control 2024; 11 (4) :263-271
URL: http://jfqhc.ssu.ac.ir/article-1-1211-en.html
Microbiology Unit, Department of Biological sciences, Crawford University, PMB 2001, Igbesa, Ogun State, Nigeria , topebanjo4rever@gmail.com
Abstract:   (134 Views)
Background: Tomatoes are fruits that are highly prone to spoilage, making them vulnerable to microbial decay. This research aimed to explore the effectiveness of an edible coating, specifically beeswax, in prolonging the shelf-life of tomato fruits.
Methods: A total of twenty-four tomatoes were procured from the market in September 2021, washed, and subsequently treated with beeswax at varying concentrations of 3, 6, 9, 12, and 15%) (w/v). The tomatoes were then stored in well-ventilated baskets for 30 days, during which organoleptic, biochemical, and microbial assessments were conducted. The Gas Chromatography-Mass Spectrometry analysis of the beeswax samples was performed following standard procedures. The relative percentage of each component was determined by comparing its average peak area to the total area. The mean and standard deviation of the duplicated data were calculated, and significance was assessed using ANOVA at a 95% confidence interval (p-value<0.05) with the aid of the Statgraphics Plus (version 5.0) statistical package.
Results: The beeswax emulsion achieved an optimal preservation rate of 70%, significantly higher than the control group, which had a rate of 20%. Additionally, a mean preservation rate of 68% was noted with the 12% beeswax emulsion, compared to 20% for control after 30 days. Fungal isolates identified from the fruits included Aspergillus niger, Candida krusei, Fusarium oxysporum, Candida sp., A. fumigatus, Penicillium notatum, and A. terreus. The Gas Chromatography-Mass Spectrometry analysis of the beeswax indicated the presence of certain compounds that may contribute to its antimicrobial properties.
Conclusion: The findings of this study demonstrate that beeswax emulsion effectively extends the shelf-life of tomato fruits, offering a potential solution to reduce waste and economic losses for farmers and the broader economy.

DOI: 10.18502/jfqhc.11.4.17444
Full-Text [PDF 572 kb]   (82 Downloads)    
Type of Study: Original article | Subject: Special
Received: 24/03/03 | Accepted: 24/11/02 | Published: 24/12/30

References
1. Ahmed I.H., Abu-Goukh A.A. (2003). Effect of maleic hydrazide and waxing on ripening and quality of tomato fruit. Gezira Journal of Agricultural Science. 1 : 59-72.
2. Ajayi A. (2013). Nature of tomatoes microflora under storage. American Journal of Experimental Agriculture. 3: 89-101. [DOI: 10.9734/AJEA/2013/2177]. [DOI:10.9734/AJEA/2013/2177]
3. Ajijolakewu K.A., Awarun F.J. (2015). Comparative antibacterial efficacy of Vitellaria paradoxa (Shea butter tree) extracts against some clinical bacterial isolates. Notulae Scientia Biologicae. 7: 264-268. [DOI: 10.15835/nsb739617] [DOI:10.15835/nsb739617]
4. Akinmusire O.O. (2011). Fungi species associated with the spoilage of some edible fruits in Maiduguri, north eastern Nigeria. Advances in Environmental Biology. 5: 157-161.
5. Banjo T.T., Bankole-Ojo O. (2023). Comparative preservative potential of shea butter and coconut oil on tomato fruits (Solanum lycopersicum). African Scientist. 24:338-348. [DOI: 10.26538/africanscientist.24.3.20230904]
6. Banjo T.T., Oluwole O.R., Nzei V.I. (2022). Preservation of Lycopersicum esculentum (tomatoes) with extracts of Annona muricata (Soursop) and Hibiscus sabdariffa (Roselle plant). Tropical Life Sciences Research. 33: 1-22. [DOI: 10.21315/tlsr2022.33.1.1] [DOI:10.21315/tlsr2022.33.1.1] [PMID] [PMCID]
7. Bosquez-Molina E., Guerrero-Legarreta I., VernonCarter E.J. (2003). Moisture barrier properties and morphology of mesquite gum-candelilla wax based edible emulsion coatings. Food Research International. 36:885-893. [DOI: 10.1016/S0963-9969(03)00097-8] [DOI:10.1016/S0963-9969(03)00097-8]
8. Chandrasekaran M., Senthilkumar A., Venkatesalu V. (2011). Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. European Review for Medical and Pharmacological Sciences. 15: 775-780.
9. Chaudhary P., Sharma A., Singh B., Nagpal A.K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology. 55: 2833-2849. [DOI: 10.1007/s13197-018-3221-z] [DOI:10.1007/s13197-018-3221-z] [PMID] [PMCID]
10. Chauhan O.P., Lakshmi S., Pandey A.K., Ravi N., Gopalan N., Sharma R.K.(2017). Non-Destructive quality monitoring of fresh fruits and vegetables. Defence Life Science Journal. 2: 103. [DOI: 10.14429/dlsj.2.11379] [DOI:10.14429/dlsj.2.11379]
11. Chen S.C., Biswas C., Bartley R., Widmer F., Pantarat N., Obando D., Djordjevic J.T., Ellis D.H., Jolliffe K.A., Sorrell T.C. (2010). In vitro antifungal activities of bis (alkylpyridinium) alkane compounds against pathogenic yeasts and molds. Antimicrobial Agents and Chemotherapy. 54: 3233-3240. [DOI: 10.1128/AAC.00231-10] [DOI:10.1128/AAC.00231-10] [PMID] [PMCID]
12. Clement A., Bacon R., Sirois S., Dorais M. (2015). Mature-ripe tomato spectral classification according to lycopene content and fruit type by visible, NIR reflectance and intrinsic fluorescence. Quality Assurance and Safety of Crops and Foods. 1: 1-10. [DOI: 10.3920/QAS2014.0521] [DOI:10.3920/QAS2014.0521]
13. Corbo M.R., Speranza B., Campaniello D., Amato D.D., Sinigaglia M. (2010). Fresh-cut fruits preservation: current status and emerging technologies. In: Mendez-Vilas A. (Editor). Current research, technology and education topics. Formatex Research Center, Badajoz. pp: 1143-1154.
14. Dhall R.K. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition. 53: 435-450. [DOI: 10.1080/10408398. 2010.541568] [DOI:10.1080/10408398.2010.541568] [PMID]
15. Efendi D., Hermawati H. (2014). The use of bee wax, chitosan and BAP to prolong shelflife of mangosteen (Garcina mangostana L.) fruit. Jurnal Hortikultura Indonesia. 1: 32-39. [DOI: 10.29244/jhi.1.1.32-39] [DOI:10.29244/jhi.1.1.32-39]
16. Fratini F., Cilia G., Turchi B., Felicioli A. (2016). Beeswax: a minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine. 9: 839-843. [DOI: 10.1016/j.apjtm.2016.07.003] [DOI:10.1016/j.apjtm.2016.07.003] [PMID]
17. Garg R.K., Batav N., Silawat N., Singh R.K. (2013). Isolation and identification of pathogenic microbes from tomato puree and their delineation of distinctness by molecular techniques. Journal of Applied Biology and Biotechnology. 1: 024-031.
18. González-Aguilar G.A., Ruiz-Cruz S., Soto-Valdez H., Vázquez-Ortiz F., Pacheco A. R., Wang C.Y. (2005). Biochemical changes of fresh cut pineapple slices treated with anti-browning agents. International Journal of Food Science and Technology. 40: 377-383. [DOI: 10.1111/j.1365-2621.2004.00940.x] [DOI:10.1111/j.1365-2621.2004.00940.x]
19. Hosea Z.Y., Liamngee K., Owoicho A.L., Agatsa T.D. (2017). Effect of Neem leaf powder on post-harvest shelf life and quality of tomato fruits in storage. International Journal of Development and Sustainability. 6: 1334-1349.
20. Huang C.B., Altimova Y., Myers T.M., Ebersole J.L. (2011).Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of Oral Biology. 56: 650-654. [DOI: 10.1016/ j.archoralbio.2011.01.011] [DOI:10.1016/j.archoralbio.2011.01.011] [PMID] [PMCID]
21. Ibrahim A.D., Musa K., Sani A., Aliero A.A., Yusuf B.S. (2011). Microorganisms associated with the production of volatile compounds in spoilt tomatoes. Research in Biotechnology. 2: 82-89.
22. Ijato J.Y., Otoide J.E., Ijadunola J.A., Aladejimokun A.O. (2011). Efficacy of antimicrobial effect of Vernonia amygdalina and Tridax procumbens in in-vitro control of tomato (Lycopersicon esculentum) post-harvest fruit rot. Report and Opinion. 3: 120-123.
23. Irokanulo E.O., Egbezein I.L., Owa S.O. (2015). Use of Moringa oleifera in the preservation of fresh tomatoes. IOSR Journal of Agriculture and Veterinary Science. 8: 127-132. [DOI: 10.9790/2380-0822127132]
24. Islam M.M., Islam R., Hassan S.M., Karim M.R., Rahman M.M., Rahman S., Hossain M.N., Islam D., Shaikh M.A., Georghiou P.E. (2023). Carboxymethyl chitin and chitosan derivatives: Synthesis, characterization and antibacterial activity. Carbohydrate Polymer Technologies and Applications. 5: 100283. [DOI: 10.1016/j.carpta.2023. 100283] [DOI:10.1016/j.carpta.2023.100283]
25. Kaluza B.F., Wallace H., Heard T.A., Klein A.M., Leonhardt S.D. (2016). Urban gardens promote bee foraging over natural habitats and plantations. Ecological Evolution. 6: 1304-1316. [DOI: 10.1002/ece3.1941] [DOI:10.1002/ece3.1941] [PMID] [PMCID]
26. Lunde C.S., Hartouni S.R., Janc J.W., Mammen M., Humphrey P.P., Benton B.M. (2009). Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrobial Agents and Chemotherapy. 53 : 3375-3383. [DOI: 10.1128/AAC.01710-08] [DOI:10.1128/AAC.01710-08] [PMID] [PMCID]
27. Maqbool M., Ali A., Alderson P.G., Zahid N., Siddiqui Y. (2011). Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruits during cold storage. Journal of Agricultural and Food Chemistry. 59: 5474-5482. [DOI: 10.1021/jf200623m] [DOI:10.1021/jf200623m] [PMID]
28. Mbajiuka S., Emmanuel C., Emmanuel E. (2014). Isolation of microorganisms associated with deterioration of tomato (Lycopersicum esculentum) and pawpaw (Carica papaya) fruits. International Journal of Current Microbiology and Applied Sciences. 3: 501-512.
29. Montaser M., Sayed A.M., Bishr M.M., Zidan E.W., Zaki M.A. ,Hassan H.M. , Mohammed R., Hifnawy M.S. (2023). GC-MS analysis of honeybee products derived from medicinal plants. Beni-Suef University Journal of Basic and Applied Sciences. 12: 63. [DOI: 10.1186/s43088-023-00396-3] [DOI:10.1186/s43088-023-00396-3]
30. Ochida C. O., Itodo A.U., Nwanganga P.A. (2019). A review on postharvest storage, processing and preservation of tomatoes (Lycopersicon esculentum Mill). Asian Food Science Journal. 6: 1-10. [DOI: 10.9734/AFSJ/2019/44518] [DOI:10.9734/AFSJ/2019/44518]
31. Onuorah S., Orji M.U. (2015). Fungi associated with the spoilage of post-harvest tomato fruits sold in major markets in Awka, Nigeria. Universal Journal of Microbiology Research. 3: 11-16. [DOI: 10.13189/ujmr.2015.030201] [DOI:10.13189/ujmr.2015.030201]
32. Regassa M.D., Mohammed A., Bantte K. (2012). Evaluation of tomato (Lycopersicum esculentum Mill) genotypes for fruit quality and shelf life. The African Journal of Plant Science and Biotechnology. 3: 50-56.
33. Ruelas-Chacon X., Contreras-Esquivel J.C., Montañez J., Aguilera-Carbo A.F., Reyes-Vega M.L., Peralta- Rodriguez R. D., Sanchéz-Brambila G. (2017).Guar gum as an edible coating for enhancing shelf- life and improving postharvest quality of Roma tomato (Solanum lycopersicum). Journal of Food Quality. 2017. [DOI:10.1155/2017/8608304] [DOI:10.1155/2017/8608304]
34. Sarkar S.,Singh R.P. (2022). Nyctanthes arbor-tristis L.: Perspective of phytochemical-based Inhibition of fatty acid biosynthesis in Mycobacterium tuberculosis. International Journal of Plant Based Pharmaceuticals. 2: 166-175. [DOI: 10.55484/ijpbp.1049943] [DOI:10.55484/ijpbp.1049943]
35. Senna M., Al-Shamrani K., Al-Arifi A. (2014). Edible coating for shelf-life extension of fresh banana fruit based on gamma irradiated plasticized poly(vinyl alcohol)/carboxymethyl cellulose/tannin composites. Materials Sciences and Applications. 5: 395-415. [DOI: 10.4236/msa.2014.56045] [DOI:10.4236/msa.2014.56045]
36. Taheri F., Jafar Daghighi A., Bodaghi H., Ebrahimi A., Ghasimi Hagh Z. (2022). The effect of 1-methylcyclopropene application incorporated with packaging on the expression of ethylene-related genes and quality maintenance of cherry tomato cultivars. Journal of Research and Innovation in Food Science and Technology. 11: 275-290 [DOI: 10.22101/JRIFST.2022.309903.1285]
37. Vignesh R.M., Nair B.R. (2019). Improvement of shelf life quality of tomatoes using a novel edible coating formulation. Plant Science Today. 6: 84-90. [DOI: 10.14719/pst.2019. 6.2.443] [DOI:10.14719/pst.2019]
38. Wada N.M., Muhammad M.I., Garba A.S., Ghazali H.M. (2019). Antibacterial activity of Vitellaria paradoxa seed oil extract and honey against bacterial isolates from wound infection. International Journal of Biological, Physical and Chemical Studies. 1: 16-21.
39. Wogu M. D., Ofuase O. (2014). Microorganisms responsible for the spoilage of tomato fruits, Lycopersicum esculentum, sold in markets in Benin City, Southern Nigeria. Scholars Academic Journal of Biosciences. 2: 459-466. [DOI: 10.36347/sajb.2014.v02i07.012]
40. Zewdie B., Shonte T.T., Woldetsadik K. (2022). Shelf life and quality of tomato (Lycopersicon esculentum) fruits as affected by neem leaf extract dipping and beeswax coating. International Journal of Food Properties. 25: 570-592. [DOI: 10.1080/10942912.2022.2053709] [DOI:10.1080/10942912.2022.2053709]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb