Volume 12, Issue 2 (June 2025)                   J. Food Qual. Hazards Control 2025, 12(2): 84-93 | Back to browse issues page

Ethics code: Not applicable.


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafarbeigi Z, Sadeghi E, Abdolmaleki K, Soltani M, Dousti S, Mir S, et al . Aflatoxin B1 Measurement in Traditional Kermanshah Cookies and Risk Assessment in Dietary Exposure. J. Food Qual. Hazards Control 2025; 12 (2) :84-93
URL: http://jfqhc.ssu.ac.ir/article-1-1216-en.html
Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran , ehsan.sadeghi59@yahoo.com
Abstract:   (22 Views)
Background: Aflatoxins (AFs), especially the B1 subtype, present a significant threat to public health. Chronic exposure to AFB1 has been associated with the development of serious diseases, such as cancer. Therefore, detecting and controlling its presence in food is crucial for preventing long-term health issues.
Methods: In the present study, we collected 40 samples of four types of traditional Kermanshahi cookies from a local market at random intervals throughout 2023 (Nanbernji, Kak, Nankhormaii, and Nanroghani). These samples were examined for AFB1 contamination using High Performance Liquid Chromatography. The risk of exposure to this toxin was then calculated by utilizing a Food Frequency Questionnaire and various parameters (Estimation Daily Intake, Lifetime Average Daily Dose, Margin of Exposure, excess individual lifetime risk of cancer) were calculated using Crystal Ball software. Statistical analysis was conducted using a completely randomized design with three replications.
Results: The concentration of AFB1 in Nanbernji, Kak, Nanroghani, and Nankhormaii (traditional Kermanshah cookies) was 3.12, 2.99, 1.64, and 3.95 μg/kg, respectively. The AFB1 contamination levels in Kermanshah's traditional cookies exceeded the European Union's limit of two ng/g. The Margin of Exposure for all cookie samples in both adult and teenage age groups was higher than 10,000 except for Nanroghani consumption in individuals under 18 years old. Based on health evaluation results, all age groups in Kermanshah were found to be at risk of cancer.
Conclusion: Considering the consumption of these traditional sweets by individuals and the risk of cancer in the study population, competent authorities must adopt a supervisory approach and develop a documented national program.

DOI: 10.18502/jfqhc.12.2.18858
Full-Text [PDF 667 kb]   (13 Downloads) |   |   Full-Text (HTML)  (4 Views)  
Type of Study: Original article | Subject: Special
Received: 24/10/09 | Accepted: 25/06/03 | Published: 25/06/22

References
1. Alim M., Iqbal S.Z., Mehmood Z., Asi M.R., Zikar H., Chanda H., Malik N. (2018). Survey of mycotoxins in retail market cereals, derived products and evaluation of their dietary intake. Food Control. 84: 471-477. [DOI: 10.1016/j.foodcont.2017.08.034] [DOI:10.1016/j.foodcont.2017.08.034]
2. Alvito P., Assunção R. (2022). Climate change and the impact on aflatoxin contamination in foods: where are we and what should be expected?. In: Hakeem K.R., Oliveira C.A.F., Ismail A. (Editors) Aflatoxins in food: Springer, Cham. pp. 275-288. [DOI: 10.1007/978-3-030-85762-2_13] [DOI:10.1007/978-3-030-85762-2_13]
3. Andrade P., De Mello M.H., França J.A., Caldas E.D. (2012). Aflatoxins in food products consumed in Brazil: a preliminary dietary risk assessment. Food Additives and Contaminants: Part A. 30: 127-136. [DOI: 10.1080/19440049.2012.720037] [DOI:10.1080/19440049.2012.720037] [PMID]
4. Asghar M.A., Ahmed F., Jabeen S., Bhurgri M.U., Asif H., Hussain K. (2022). Effects of climatic conditions and hermetic storage on the growth of Aspergillus parasiticus and aflatoxin B1 contamination in basmati rice. Journal of Stored Products Research. 96: 101944. [DOI: 10.1016/j.jspr.2022.101944] [DOI:10.1016/j.jspr.2022.101944]
5. Bailey R.L. (2021). Overview of dietary assessment methods for measuring intakes of foods, beverages, and dietary supplements in research studies. Current Opinion in Biotechnology. 70: 91-96. [DOI: 10.1016/j.copbio.2021.02.007] [DOI:10.1016/j.copbio.2021.02.007] [PMID] [PMCID]
6. Bashiry M., Javanmardi F., Sadeghi E., Shokri S., Hossieni H., Oliveira C.A.F., Mousavi Khaneghah A. (2021). The prevalence of aflatoxins in commercial baby food products: a global systematic review, meta-analysis, and risk assessment study. Trends in Food Science and Technology. 114: 100-115. [DOI: 10.1016/j.tifs.2021.05.014] [DOI:10.1016/j.tifs.2021.05.014]
7. Batal M., Chan H.M., Fediuk K., Ing A., Berti P., Sadik T., Johnson-Down L. (2021). Importance of the traditional food systems for first nations adults living on reserves in Canada. Canadian Journal of Public Health. 112: S20-S28. [DOI: 10.17269/s41997-020-00353-y] [DOI:10.17269/s41997-020-00353-y] [PMID] [PMCID]
8. Benford D., Bolger P.M., Carthew P., Coulet M., DiNovi M., Leblanc J.-C., Renwick A.G., Setzer W., Schlatter J., Smith B., Slob W., Williams G., et al. (2010). Application of the margin of exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food and Chemical Toxicology. 48: S2-S24. [DOI: 10.1016/j.fct.2009.11.003] [DOI:10.1016/j.fct.2009.11.003] [PMID]
9. Bevilacqua A., De Santis A., Sollazzo G., Speranza B., Racioppo A., Sinigaglia M., Corbo M.R. (2023). Microbiological risk assessment in foods: background and tools, with a focus on risk ranger. Foods. 12: 1483. [DOI: 10.3390/foods12071483] [DOI:10.3390/foods12071483] [PMID] [PMCID]
10. Blanco-Lizarazo C. M., Gamboa-Marín A., Vega S., Jiménez-Rodríguez L.P., Sánchez B I.C. (2019). Assessment of dietary exposure to aflatoxin B1 from corn arepas in Colombia. Food Additives and Contaminants: Part A. 36: 1109-1117. [DOI: 10.1080/19440049.2019.1615643] [DOI:10.1080/19440049.2019.1615643] [PMID]
11. Bol E.K., Araujo L., Veras F.F., Welke J.E. (2016). Estimated exposure to zearalenone, ochratoxin A and aflatoxin B1 through the consume of bakery products and pasta considering effects of food processing. Food and Chemical Toxicology. 89: 85-91. [DOI: 10.1016/j.fct.2016.01.013] [DOI:10.1016/j.fct.2016.01.013] [PMID]
12. Brinda R., Vijayanandraj S., Uma D., Malathi D., Paranidharan V., Velazhahan R. (2013). Role of Adhatoda vasica (L.) Nees leaf extract in the prevention of aflatoxin‐induced toxicity in Wistar rats. Journal of the Science of Food and Agriculture. 93: 2743-2748. [DOI: 10.1002/jsfa.6093] [DOI:10.1002/jsfa.6093] [PMID]
13. Broekaert N., Devreese M., De Baere S., De Backer P., Croubels S. (2015). Modified Fusarium mycotoxins unmasked: from occurrence in cereals to animal and human excretion. Food and Chemical Toxicology. 80: 17-31. [DOI: 10.1016/j.fct.2015. 02.015] [DOI:10.1016/j.fct.2015.02.015] [PMID]
14. Chaharaein M., Sadeghi E., Mohammadi R., Rouhi M., Soltani M. (2021). The effect of β-glucan and inulin on the reduction of aflatoxin B1 level and assessment of textural and sensory properties in chicken sausages. Current Research in Food Science. 4: 765-772. [DOI: 10.1016/j.crfs.2021.10.007] [DOI:10.1016/j.crfs.2021.10.007] [PMID] [PMCID]
15. De Barros H.E.A., Natarelli C.V.L., De Carvalho Tavares I.M., De Oliveira A.L.M., Araújo A.B. S., Pereira J., Carvalho E.E.N., De Barros Vilas Boas E.V., Franco M. (2020). Nutritional clustering of cookies developed with cocoa shell, soy, and green banana flours using exploratory methods. Food and Bioprocess Technology. 13: 1566-1578. [DOI: 10.1007/s11947-020-02495-w] [DOI:10.1007/s11947-020-02495-w]
16. Esposito F., Nardone A., Fasano E., Triassi M., Cirillo T. (2017). Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a margin of exposure approach. Food and Chemical Toxicology. 108: 249-256. [DOI: 10.1016/j.fct.2017.08.006] [DOI:10.1016/j.fct.2017.08.006] [PMID]
17. Gómez M., Gutkoski L.C., Bravo‐Núñez Á. (2020). Understanding whole‐wheat flour and its effect in breads: a review. Comprehensive Reviews in Food Science and Food Safety. 19: 3241-3265. [DOI: 10.1111/1541-4337.12625] [DOI:10.1111/1541-4337.12625] [PMID]
18. Gonçalves A., Gkrillas A., Dorne J.L., Dall'Asta C., Palumbo R., Lima N., Battilani P., Venâncio A., Giorni P. (2019). Pre‐ and postharvest strategies to minimize mycotoxin contamination in the rice food chain. Comprehensive Reviews in Food Science and Food Safety. 18: 441-454. [DOI: 10.1111/1541-4337.12420] [DOI:10.1111/1541-4337.12420] [PMID]
19. González-Martínez F., Sánchez-Rodas D., Cáceres D.D., Martínez M.F., Quiñones L.A., Johnson-Restrepo B. (2018). Arsenic exposure, profiles of urinary arsenic species, and polymorphism effects of glutathione-s-transferase and metallothioneins. Chemosphere. 212: 927-936. [DOI: 10.1016/j.chemosphere. 2018.08.139] [DOI:10.1016/j.chemosphere.2018.08.139] [PMID]
20. Gustafsson Å., Bergman Å., Weiss J.M. (2022). Estimated daily intake of per-and polyfluoroalkyl substances related to different particle size fractions of house dust. Chemosphere. 303: 135061. [DOI: 10.1016/j.chemosphere.2022.135061] [DOI:10.1016/j.chemosphere.2022.135061] [PMID]
21. Heshmati A., Mozaffari Nejad A.S., Mehri F. (2021). Occurrence, dietary exposure, and risk assessment of aflatoxins in wheat flour from Iran. International Journal of Environmental Analytical Chemistry. 103: 9395-9408. [DOI: 10.1080/03067319.2021. 2011254] [DOI:10.1080/03067319.2021.2011254]
22. Iqbal S.Z., Asi M.R., Zuber M., Akram N., Batool N. (2013). Aflatoxins contamination in peanut and peanut products commercially available in retail markets of Punjab, Pakistan. Food Control. 32: 83-86. [DOI: 10.1016/j.foodcont.2012.11.024] [DOI:10.1016/j.foodcont.2012.11.024]
23. Jahanbakhsh M., Afshar A., Momeni Feeli S., Pabast M., Ebrahimi T., Mirzaei M., Akbari-Adergani B., Farid M., Arabameri M. (2019). Probabilistic health risk assessment (Monte Carlo simulation method) and prevalence of aflatoxin B1 in wheat flours of Iran. International Journal of Environmental Analytical Chemistry. 101: 1074-1085. [DOI: 10.1080/03067319.2019. 1676421] [DOI:10.1080/03067319.2019.1676421]
24. Joubrane K., Mnayer D., El Khoury A., El Khoury A., Awad E. (2020). Co-occurrence of aflatoxin B1 and ochratoxin A in Lebanese stored wheat. Journal of Food Protection. 83: 1547-1552. [DOI: 10.4315/JFP-20-110] [DOI:10.4315/JFP-20-110] [PMID]
25. Licona-Aguilar Á.I., Lois-Correa J.A., Torres-Huerta A.M., Domínguez-Crespo M.A., Urdapilleta-Inchaurregui V., Rodríguez-Salazar A.E., Brachetti-Sibaja S.B. (2023). Production of dietary cookies based on wheat-sugarcane bagasse: determination of textural, proximal, sensory, physical and microbial parameters. LWT. 184: 115061. [DOI: 10.1016/j. lwt.2023.115061] [DOI:10.1016/j.lwt.2023.115061]
26. Martinez-Miranda M.M., Rosero-Moreano M., Taborda-Ocampo G. (2019). Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control. 98: 359-366. [DOI: 10.1016/j.foodcont.2018.11.046] [DOI:10.1016/j.foodcont.2018.11.046]
27. Medina D.A.V., Borsatto J.V.B., Maciel E.V. S., Lanças F.M. (2021). Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends in Analytical Chemistry. 135: 116156. [DOI: 10.1016/j.trac.2020.116156] [DOI:10.1016/j.trac.2020.116156]
28. Mohamed H., Haris P.I., Brima E.I. (2019). Estimated dietary intake of essential elements from four selected staple foods in Najran City, Saudi Arabia. BMC Chemistry. 13: 73. [DOI: 10.1186/s13065-019-0588-5] [DOI:10.1186/s13065-019-0588-5] [PMID] [PMCID]
29. Mohammadifard N., Haghighatdust F., Kelishadi R., Bahonar A., Dianatkhah M., Heidari H., Maghroun M., Dehghan M. (2021). Validity and reproducibility of a semi‐quantitative food frequency questionnaire for Iranian adults. Nutrition and Dietetics. 78: 305-314. [DOI: 10.1111/1747-0080.12666] [DOI:10.1111/1747-0080.12666] [PMID]
30. Nazareth T.D.M., Soriano Pérez E., Luz C., Meca G., Quiles J.M. (2024). Comprehensive review of aflatoxin and ochratoxin A dynamics: emergence, toxicological impact, and advanced control strategies. Foods. 13: 1920. [DOI: 10.3390/ foods13121920] [DOI:10.3390/foods13121920] [PMID] [PMCID]
31. Nematollahi A., Kamankesh M., Hosseini H., Ghasemi J., Hosseini-Esfahani F., Mohammadi A., Mousavi Khaneghah A. (2020). Acrylamide content of collected food products from Tehran's market: a risk assessment study. Environmental Science and Pollution Research. 27: 30558-30570. [DOI: 10.1007/s11356-020-09323-w] [DOI:10.1007/s11356-020-09323-w] [PMID]
32. Noroozi R., Kobarfard F., Rezaei M., Ayatollahi S.A., Paimard G., Eslamizad S., Razmjoo F., Sadeghi E. (2022). Occurrence and exposure assessment of aflatoxin B1 in Iranian breads and wheat-based products considering effects of traditional processing. Food Control. 138: 108985. [DOI: 10.1016/j.foodcont.2022. 108985] [DOI:10.1016/j.foodcont.2022.108985]
33. Noroozi R., Sadeghi E., Rouhi M., Safajoo S., Razmjoo F., Paimard G., Moradi L. (2020). Fates of aflatoxin B1 from wheat flour to Iranian traditional cookies: managing procedures to aflatoxin B1 reduction during traditional processing. Food Science and Nutrition. 8: 6014-6022. [DOI: 10.1002/fsn3.1888] [DOI:10.1002/fsn3.1888] [PMID] [PMCID]
34. Nugraha A., Khotimah K., Rietjens I.M.C.M. (2018). Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food and Chemical Toxicology. 113: 134-144. [DOI: 10.1016/j.fct.2018.01.036] [DOI:10.1016/j.fct.2018.01.036] [PMID]
35. Pralatnet S., Poapolathep S., Giorgi M., Imsilp K., Kumagai S., Poapolathep A. (2016). Survey of deoxynivalenol and aflatoxin B1 in instant noodles and bread consumed in Thailand by using liquid chromatography-tandem mass spectrometry. Journal of Food Protection. 79: 1269-1272. [DOI: 10.4315/0362-028X.JFP-15-510] [DOI:10.4315/0362-028X.JFP-15-510] [PMID]
36. Razavi-Shearer D., Gamkrelidze I., Nguyen M.H., Chen D.-S., Van Damme P., Abbas Z., Abdulla M., Abou Rached A., Adda D., Aho I., Akarca U., Hasan F., et al. (2018). Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. The Lancet Gastroenterology and Hepatology. 3: 383-403. [DOI: 10.1016/S2468-1253(18)30056-6] [DOI:10.1016/S2468-1253(18)30056-6] [PMID]
37. Sahin G.A., Karabulut D., Unal G., Sayan M., Sahin H. (2022). Effects of probiotic supplementation on very low dose AFB1-induced neurotoxicity in adult male rats. Life Sciences. 306: 120798. [DOI: 10.1016/j.lfs.2022.120798] [DOI:10.1016/j.lfs.2022.120798] [PMID]
38. Soltani M., Sadeghi E., Mahaki B., Shirvan H., Fallah M., Motamedi P., Mohammadi R. (2022). Survey of consumption pattern, exposure, and risk assessment of aflatoxins in different animal livers. Iranian Journal of Chemistry and Chemical Engineering. 40: 698-708.
39. Taghizadeh S.F., Rezaee R., Badibostan H., Karimi G. (2020). Aflatoxin B1 in walnuts: a probabilistic cancer risk assessment for Iranians. Toxicological and Environmental Chemistry. 102: 506-519. [DOI: 10.1080/02772248.2020.1791868] [DOI:10.1080/02772248.2020.1791868]
40. Tucker K.L. (2007). Assessment of usual dietary intake in population studies of gene-diet interaction. Nutrition, Metabolism and Cardiovascular Diseases. 17: 74-81. [DOI: 10.1016/j.numecd. 2006.07.010] [DOI:10.1016/j.numecd.2006.07.010] [PMID]
41. Tueller G., Kerry R., Young S.G. (2023). Spatial investigation of the links between aflatoxins legislation, climate, and liver cancer at the global scale. Spatial and Spatio-Temporal Epidemiology. 46: 100592. [DOI: 10.1016/j.sste.2023.100592] [DOI:10.1016/j.sste.2023.100592] [PMID]
42. Udovicki B., Tomic N., Trifunovic B.S., Despotovic S., Jovanovic J., Jacxsens L., Rajkovic A. (2021). Risk assessment of dietary exposure to aflatoxin B1 in Serbia. Food and Chemical Toxicology. 151: 112116. [DOI: 10.1016/j.fct.2021.112116] [DOI:10.1016/j.fct.2021.112116] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb