Volume 11, Issue 4 (December 2024)                   J. Food Qual. Hazards Control 2024, 11(4): 232-244 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani N, Farsad-Naeimi A, Sharifi E, Ghasemzadeh-Mohammadi V. Producing Polycaprolactone and Basil Seed Gum Nanofibers Using an Electrospinning Process. J. Food Qual. Hazards Control 2024; 11 (4) :232-244
URL: http://jfqhc.ssu.ac.ir/article-1-1234-en.html
Department of Nutrition and Food Safety, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , v.gh-mo@umsha.ac.ir
Abstract:   (170 Views)
Background: Novel packaging materials often exhibit enhanced environmental sustainability, safety, and biodegradability compared to conventional plastics. This work aims to identify and improve key factors influencing the production of polycaprolactone (PLC)-Basil Seed Gum (BSG) nanofibers.
Methods: The optimization of electrospun nanofibers containing PLC and BSG was done using a Box-Behnken design. Four parameters were selected as independent variables: BSG concentration percentage (A), percentage of acetone in PLC solution (B), voltage (C), and distance from nozzle to collector (D). Two responses, namely the Relative Standard Deviation of nanofiber Diameter (RSDD) and Tensile Strength (TS), were chosen as dependent variables. Twenty-nine treatments were created using Design Expert software and Microsoft Excel (Design-Expert-Stat-Ease version 11 and Microsoft Excel 2012).
Results: It was found that variables A and D have the greatest effect on diameter distribution, while variables A and B have the most significant effect on TS. At a voltage of 15 kV, RSDD decreased as variable A increased from 10 to 25%. Subsequently, this trend increased from 25 to 40%. Increasing variable A from 10 to 25% at each distance (D) resulted in a decrease in RSDD, followed by an increase from 25 to 40%. TS rose as variable A declined from 40 to 25%, after which a decline was observed.
Conclusion: BSG both reduced the size and improved the texture of the nanofibers, as well as enhancing the performance of Oxygen Transmission Rate. Furthermore, BSG negatively affected the thermal stability of films in the Thermal Gravimetric Analysis-Differential Thermal Analysis. A detrimental impact on Water Vapor Permeability was observed when combining these two compounds. The mechanical qualities generally decreased with the addition of BSG.

DOI: 10.18502/jfqhc.11.4.17441
Full-Text [PDF 1498 kb]   (55 Downloads)    
Type of Study: Original article | Subject: Special
Received: 24/05/30 | Accepted: 24/11/30 | Published: 24/12/30

References
1. Adibi A., Trinh B.M., Mekonnen T.H. (2023). Recent progress in sustainable barrier paper coating for food packaging applications. Progress in Organic Coatings. 181: 107566. [DOI: 10.1016/j.porgcoat.2023.107566] [DOI:10.1016/j.porgcoat.2023.107566]
2. Allafchian A.R., Seyed Jalali A.H., Seyed Mousavi E. (2018). Biocompatible biodegradable polycaprolactone/basil seed mucilage scaffold for cell culture. IET nanobiotechnology. 12: 1003-1149. [DOI: 10.1049/iet-nbt.2018.5071] [DOI:10.1049/iet-nbt.2018.5071] [PMID] [PMCID]
3. American Society for Testing and Materials (ASTM). (2005). Standard test methods for water vapor transmission of materials. ASTM International. URL: https://www.astm.org/ e0096-00.html.
4. ASTM International. (2005). Standard test methods for water vapor transmission of materials. ASTM E96/E96M-2005. URL: https://cdn.standards.iteh.ai/samples/41444/ee99c0b797cc4ae1a9f6d85416ae1302/ASTM-E96-E96M-05.pdf.
5. Azeredo H.M.C., Mattoso L.H.C., Wood D., Williams T.G., Avena-Bustillos R.J., McHugh T.H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science. 74: N31-N35. [DOI: 10.1111/j.1750-3841.2009.01186.x] [DOI:10.1111/j.1750-3841.2009.01186.x] [PMID]
6. Beikzadeh S., Khezerlou A., Seid Jafari M., Pilevar Z., Mortazavian A.M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science. 280: 102164. [DOI: 10.1016/j.cis.2020.102164] [DOI:10.1016/j.cis.2020.102164] [PMID]
7. Bhardwaj N., Kundu S.C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances. 28: 325-347. [DOI: 10.1016/j.biotechadv.2010.01.004] [DOI:10.1016/j.biotechadv.2010.01.004] [PMID]
8. Biswas S., Bal M., Behera S.K., Sen T.K., Meikap B.C. (2019). Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by Response Surface Methodology (RSM). Water. 11: 325. [DOI: 10.3390/ w11020325] [DOI:10.3390/w11020325]
9. Cazón P., Morales-Sanchez E., Velazquez G., Vázquez M. (2022). Measurement of the water vapor permeability of chitosan films: a laboratory experiment on food packaging materials. Journal of Chemical Education. 99: 2403-2408. [DOI: 10.1021/acs.jchemed.2c00449] [DOI:10.1021/acs.jchemed.2c00449]
10. Cesur S. (2018). The effects of additives on the biodegradation of polycaprolactone composites. Journal of Polymers and the Environment. 26: 1425-1444. [DOI: 10.1007/s10924-017-1029-y] [DOI:10.1007/s10924-017-1029-y]
11. Charles A.P.R., Jin T.Z., Mu R., Wu Y. (2021). Electrohydrodynamic processing of natural polymers for active food packaging: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety. 20: 6027-6056. [DOI: 10.1111/1541-4337.12827] [DOI:10.1111/1541-4337.12827] [PMID]
12. Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 42: 261-272. [DOI: 10.1016/S0032-3861(00)00250-0] [DOI:10.1016/S0032-3861(00)00250-0]
13. Ding C., Fang H., Duan G., Zou Y., Chen S., Hou H. (2019). Investigating the draw ratio and velocity of an electrically charged liquid jet during electrospinning. RSC Advances. 9: 13608-13613. [DOI: 10.1039/c9ra02024a] [DOI:10.1039/C9RA02024A] [PMID] [PMCID]
14. Egbu J., Ohodnicki P.R., Baltrus J.P., Talaat A., Wright R.F., McHenry M.E. (2022). Analysis of surface roughness and oxidation of FeNi-based metal amorphous nanocomposite alloys. Journal of Alloys and Compounds. 912: 165155. [DOI: 10.1016/j.jallcom.2022.165155] [DOI:10.1016/j.jallcom.2022.165155]
15. Ferreira S.L.C., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandão G.C., Da Silva E.G.P., Portugal L.A., Dos Reis P.S., Souza A.S., Dos Santos W.N.L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta. 597: 179-186. [DOI: 10.1016/j.aca.2007.07.011] [DOI:10.1016/j.aca.2007.07.011] [PMID]
16. Gupta A., Mishra B.K., Panigrahi P.K. (2021). Internal and external hydrodynamics of Taylor cone under constant and alternating voltage actuation. Physics of Fluids. 33: 117118. [DOI: 10.1063/5.0071921] [DOI:10.1063/5.0071921]
17. Han W., Wang L., Li Q., Ma B., He C., Guo X., Nie J., Ma G. (2022). A review: current status and emerging developments on natural polymer-based electrospun fibers. Macromolecular Rapid Communications. 43: 2200456. [DOI: 10.1002/marc.202200456] [DOI:10.1002/marc.202200456] [PMID]
18. Hashemi Gahruie H., Eskandari M.H., Van Der Meeren P., Seyed Hosseini M.H. (2019). Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate Polymers. 219: 155-161. [DOI: 10.1016/j.carbpol.2019.05.024] [DOI:10.1016/j.carbpol.2019.05.024] [PMID]
19. Hashemi Gahruie H., Ziaee E., Eskandari M.H., Seyed Hosseini M.H. (2017). Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydrate Polymers. 166: 93-103. [DOI: 10.1016/j.carbpol.2017.02.103] [DOI:10.1016/j.carbpol.2017.02.103] [PMID]
20. International Standard Organization (ISO). (2007). Plastics - film and sheeting - determination of gas-transmission rate - part 1: differential-pressure method. ISO 15105-1:2007.. Geneva, Switzerland. URL: https://cdn.standards.iteh.ai/samples/41677/ba5642d6d50d46d4a8a0b71df1ab2ee3/ISO-15105-1-2007.pdf.
21. Jacobs V., Anandjiwala R.D., Maaza M. (2010). The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science. 115: 3130-3136. [DOI: 10.1002/app. 31396] [DOI:10.1002/app.31396]
22. Janani N., Zare E.N., Salimi F., Makvandi P. (2020). Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydrate Polymers. 247: 116678. [DOI: 10.1016/j.carbpol.2020. 116678] [DOI:10.1016/j.carbpol.2020.116678] [PMID]
23. Jensen W.A. (2016). Confirmation runs in design of experiments. Journal of Quality Technology. 48: 162-177. [DOI: 10.1080/00224065.2016.11918157] [DOI:10.1080/00224065.2016.11918157]
24. Jouki M., Khazaei N., Ghasemlou M., HadiNezhad M. (2013). Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers. 96: 39-46. [DOI: 10.1016/j.carbpol.2013.03.077] [DOI:10.1016/j.carbpol.2013.03.077] [PMID]
25. Kurd F., Fathi M., Shekarchizadeh H. (2017). Basil seed mucilage as a new source for electrospinning: production and physicochemical characterization. International Journal of Biological Macromolecules. 95: 689-695. [DOI: 10.1016/ j.ijbiomac.2016.11.116] [DOI:10.1016/j.ijbiomac.2016.11.116] [PMID]
26. Lee D.-H., Kim S.-H., Byun J.-H. (2020). A method of steepest ascent for multiresponse surface optimization using a desirability function method. Quality and Reliability Engineering International. 36: 1931-1948. [DOI: 10.1002/ qre.2666] [DOI:10.1002/qre.2666]
27. Li T., Zhang X., Mei J., Cui F., Wang D., Li J. (2022). Preparation of linalool/polycaprolactone coaxial electrospinning film and application in preserving salmon slices. Frontiers in Microbiology. 13: 860123 [DOI: 10.3389/fmicb. 2022. 860123] [DOI:10.3389/fmicb.2022.860123] [PMID] [PMCID]
28. Lo Faro E., Bonofiglio A., Barbi S., Montorsi M., Fava P. (2023). Polycaprolactone/starch/agar coatings for food-packaging paper: statistical correlation of the formulations' effect on diffusion, grease resistance, and mechanical properties. Polymers. 15: 3921. [DOI: 10.3390/polym15193921] [DOI:10.3390/polym15193921] [PMID] [PMCID]
29. Min T., Zhou L., Sun X., Du H., Zhu Z., Wen Y. (2022). Electrospun functional polymeric nanofibers for active food packaging: a review. Food Chemistry. 391: 133239. [DOI: 10.1016/j.foodchem.2022.133239] [DOI:10.1016/j.foodchem.2022.133239] [PMID]
30. Mirhosseini H., Amid B.T. (2012). A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International. 46: 387-398. [DOI: 10.1016/j.foodres.2011.11.017] [DOI:10.1016/j.foodres.2011.11.017]
31. Mittal V. (2011). Polymers from renewable resources. In: Mittal V. (Editor). Renewable polymers: synthesis, processing, and technology. Scrivener Publishing, Texas, USA. pp: 1-22. [DOI: 10.1002/9781118217689] [DOI:10.1002/9781118217689]
32. Mohammadi A., Ghasemzadeh-Mohammadi V., Haratian P., Khaksar R., Chaichi M. (2013). Determination of polycyclic aromatic hydrocarbons in smoked fish samples by a new microextraction technique and method optimisation using response surface methodology. Food Chemistry. 141: 2459-2465. [DOI: 10.1016/j.foodchem.2013.05.065] [DOI:10.1016/j.foodchem.2013.05.065] [PMID]
33. Myers R.H., Montgomery D.C., Anderson-Cook C.M. (2016). Response surface methodology: process and product optimization using designed experiments. 4th edition. John Wiley and Sons. New York, USA.
34. Nazir S., Wani I.A. (2021). Physicochemical characterization of basil (Ocimum basilicum L.) seeds. Journal of Applied Research on Medicinal and Aromatic Plants. 22: 100295. [DOI: 10.1016/j.jarmap.2021.100295] [DOI:10.1016/j.jarmap.2021.100295]
35. Nemat B., Razzaghi M., Bolton K., Rousta K. (2019). The Role of food packaging design in consumer recycling behavior-a literature review. Sustainability. 11: 4350. [DOI: 10.3390/su11164350] [DOI:10.3390/su11164350]
36. Oraç A., Konak Göktepe Ç., Demirci T., Akın N. (2023). Biodegradable edible film based on basil seed gum: the effect of gum and plasticizer concentrations. Journal of Polymers and the Environment. 31: 5003-5014. [DOI: 10.1007/s10924-023-02923-w] [DOI:10.1007/s10924-023-02923-w]
37. Pan J., Ai F., Shao P., Chen H., Gao H. (2019). Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chemistry. 300: 125249. [DOI: 10.1016/j.foodchem.2019.125249] [DOI:10.1016/j.foodchem.2019.125249] [PMID]
38. Park J.H., Rutledge G.C. (2017). 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules. 50: 5627-5642. [DOI: 10.1021/acs. macromol.7b00864] [DOI:10.1021/acs.macromol.7b00864]
39. Rajesh Kumar B., Subba RAO T. (2012). AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest Journal of Nanomaterials and Biostructures (DJNB). 7: 1881-1889.
40. Rashid T.U., Gorga R.E., Krause W.E. (2021). Mechanical Properties of electrospun fibers-a critical review. Advanced Engineering Materials 23: 2100153. [DOI: 10.1002/adem. 202100153] [DOI:10.1002/adem.202100153]
41. Sarabia L.A., Ortiz M.C. (2009). Response surface methodology. In: Brown S.D., Tauler R., Walczak B. (Editors.). Comprehensive chemometrics: chemical and biochemical data analysis. Elsevier, Amsterdam, Netherlands. pp: 345-390. [DOI: 10.1016/B978-044452701-1.00083-1] [DOI:10.1016/B978-044452701-1.00083-1]
42. Schneller T., Waser R., Kosec M., Payne D. (2013). Chemical solution deposition of functional oxide thin films. 1st edition. Springer, Vienna. pp: 1-796. [DOI:10.1007/978-3-211-99311-8]
43. Sen S., Bal T., Rajora A.D. (2022). Green nanofiber mat from HLM-PVA-Pectin (Hibiscus leaves mucilage-polyvinyl alcohol-pectin) polymeric blend using electrospinning technique as a novel material in wound-healing process. Applied Nanoscience. 12: 237-250. [DOI: 10.1007/s13204-021-02295-4] [DOI:10.1007/s13204-021-02295-4] [PMID] [PMCID]
44. Shahrajabian M.H., Sun W., Cheng Q. (2020). Chemical components and pharmacological benefits of basil (Ocimum basilicum): a review. International Journal of Food Properties. 23: 1961-1970. [DOI: 10.1080/10942912. 2020.1828456] [DOI:10.1080/10942912.2020.1828456]
45. Stevens N.T., Anderson-Cook C.M. (2019). Design and analysis of confirmation experiments. Journal of Quality Technology. 51: 109-124. [DOI: 10.1080/00224065.2019.1571344] [DOI:10.1080/00224065.2019.1571344]
46. Suganthi S., Vignesh S., Kalyana Sundar J., Raj V. (2020). Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Applied Water Science. 10: 100. [DOI: 10.1007/s13201-020-1162-y] [DOI:10.1007/s13201-020-1162-y]
47. Thakur M., Majid I., Hussain S., Nanda V. (2021). Poly (ε‐caprolactone): a potential polymer for biodegradable food packaging applications. Packaging Technology and Science. 34: 449-461. [DOI: 10.1002/pts.2572] [DOI:10.1002/pts.2572]
48. Wandosell G., Parra-Meroño M.C., Alcayde A., Baños R. (2021). Green packaging from consumer and business perspectives. Sustainability. 13: 1356. [DOI: 10.3390/su13031356] [DOI:10.3390/su13031356]
49. Xue J., Wu T., Dai Y., Xia Y. (2019). Electrospinning and electrospun nanofibers: methods, materials, and applications. Chemical Reviews. 119: 5298-5415. [DOI: 10.1021/acs. chemrev.8b00593] [DOI:10.1021/acs.chemrev.8b00593] [PMID] [PMCID]
50. Yoon J., Yang H.-S., Lee B.-S., Yu W.-R. (2018). Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Advanced Materials. 30: 1704765. [DOI: 10.1002/adma.201704765] [DOI:10.1002/adma.201704765] [PMID]
51. Zuo W., Zhu M., Yang W., Yu H., Chen Y., Zhang Y. (2005). Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science. 45: 704-709. [DOI: 10.1002/pen.20304] [DOI:10.1002/pen.20304]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb