Volume 12, Issue 2 (June 2025)                   J. Food Qual. Hazards Control 2025, 12(2): 127-138 | Back to browse issues page

Ethics code: Not applicable.


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abrera G, Diano G, Tolentino M, Gragasin M, Cobar M, Caraos G, et al . Gamma Irradiation of Brown Rice: Effects of Dose, Variety, Paddy Age, and Packaging on Fungal Control, Shelf-Life and Post-Harvest Cost Estimate. J. Food Qual. Hazards Control 2025; 12 (2) :127-138
URL: http://jfqhc.ssu.ac.ir/article-1-1240-en.html
Biomedical Research Section, Department of Science and Technology – Philippine Nuclear Research Institute (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, Philippines , ccdeocaris@pnri.dost.gov.ph
Abstract:   (13 Views)
Background: Brown rice offers superior nutritional value compared to polished white rice but is less favored in rice-consuming countries due to its limited shelf-life. This study evaluates the efficacy of gamma irradiation in reducing fungal contamination in brown rice and extending its shelf-life, considering factors such as paddy age, rice variety, and packaging type.
Methods: The efficacy of gamma irradiation (0-1 kGy) in reducing fungal contamination in brown rice was evaluated. RC-160 and SL-7 rice varieties (240 kg per variety) were harvested from Central Luzon (Region III) during the dry season (March–April 2023). One kg of two and eight-week-old paddy grains were packed in either Super Bag™, an International Rice Research Institute developed hermetic packaging, or conventional Polyethylene bags. Mold and Yeast Counts were quantified using 3M Petrifilm™ following Association of Official Agricultural Chemists official methods. Fifty g of each sample were homogenized in Butterfield’s phosphate buffer, serially diluted, plated, and incubated at 25±1 °C for 3-5 days. Statistical analyses were performed using one-way ANOVA and Tukey’s HSD post-hoc test with Statistical Tool for Agricultural Research (STAR) software, version 2.0.1 (IRRI).
Results: Gamma irradiation at one kGy significantly (p<0.05) reduced Mold and Yeast Counts, with effects sustained for up to eight months. Paddy age and packaging type had no significant influence on fungal load. A dose of 0.58 kGy achieved a 1-log (90%) reduction in Aspergillus niger, while 3 kGy achieved complete inactivation, extending shelf-life up to six months. Cost analysis showed irradiation, logistics, and added storage fees increased retail price per kg by 0.14, 0.04, and US$0.02, respectively.
Conclusions: Gamma irradiation effectively controls fungal contamination and extends brown rice shelf-life, potentially enhancing consumer confidence and promoting wider adoption of brown rice.

DOI: 10.18502/jfqhc.12.2.18863
Full-Text [PDF 887 kb]   (15 Downloads) |   |   Full-Text (HTML)  (3 Views)  
Type of Study: Original article | Subject: Special
Received: 24/11/27 | Accepted: 25/04/30 | Published: 25/06/22

References
1. Ali N. (2019). Aflatoxins in rice: worldwide occurrence and public health perspectives. Toxicology Reports. 6: 1188-1197. [DOI: 10.1016/j.toxrep.2019.11.007] [DOI:10.1016/j.toxrep.2019.11.007] [PMID] [PMCID]
2. Asia Rice Foundation. (2018). The Philippine rice industry roadmap 2030. URL: https://www.philrice.gov.ph/wp-content/uploads/2018/09/The-Philippine-Rice-Industry-Roadmap-2030.pdf. Accessed 20 January 2024.
3. Association of Official Agricultural Chemists (AOAC). (2002). AOAC official method 997.02 yeast and mold counts in foods, dry rehydratable film method (Petrifilmtm method). URL: https://docslib.org/doc/10931992/aoac-997-02-yeast-and-mold-count-in-foods. Accessed 20 April 2025.
4. Aziz N.H., Mattar Z.A., Mahrous S.R. (2006). Contamination of grains by mycotoxin-producing molds and mycotoxins and control by gamma irradiation. Journal of Food Safety. 26: 184-201. [DOI: 10.1111/j.1745-4565.2006.00042.x] [DOI:10.1111/j.1745-4565.2006.00042.x]
5. Aziz N.H., Moussa L.A.A., Far F.M.E. (2004). Reduction of fungi and mycotoxins formation in seeds by gamma-radiation. Journal of Food Safety. 24: 109-127. [DOI: 10.1111/j.1745-4565.2004.tb00379.x] [DOI:10.1111/j.1745-4565.2004.tb00379.x]
6. Balendres M.A.O., Karlovsky P., Cumagun C.J.R. (2019). Mycotoxigenic fungi and mycotoxins in agricultural crop commodities in the Philippines: a review. Foods. 8: 249. [DOI: 10.3390/foods8070249 10.3390/foods8070249] [DOI:10.3390/foods8070249] [PMID] [PMCID]
7. Boonchoo T., Jitareerat P., Photchanachai S., Chinaphuti A. (2005). Effect of gamma irradiation on Aspergillus flavus and brown rice quality during storage. Proceeding of the 2nd International Symposium on the New Frontiers of Irradiated Food and Non-Food Products, KMUTT, Bangkok, Thailand. 22-23.
8. Borba V.S.D., Paiva Rodrigues M.H., Badiale-Furlong E. (2020). Impact of biological contamination of rice on food safety. Food Reviews International, 36: 745-760. [DOI: 10.1080/87559129.2019.1683745] [DOI:10.1080/87559129.2019.1683745]
9. Bureau of Agricultural and Fisheries Standards (BAFPS). (2014). Philippine national standard: code of good agricultural practices for rice, PNS BAFS 141:2014 ICS 65.020. URL: https://bafs.da.gov.ph/index.php/approved-philippine-national-standards/Accessed 12 February 2023.
10. Castro S.G. (2003). Postharvest technology in the Philippines. APCAEM Regional Seminar on Postharvest Technology for Major Crops. 153-162. URL: https://www.un-csam.org/sites/default/files/2021-01/Post-harvest% 20Technology%20in%20the%20Philippines.pdf.
11. Chrastil J. (1990). Chemical and physicochemical changes of rice during storage at different temperatures. Journal of Cereal Science. 11: 71-85. [DOI: 10.1016/S0733-5210(09)80182-3] [DOI:10.1016/S0733-5210(09)80182-3]
12. Cinar A., Onbaşı E. (2020). Mycotoxins: the hidden danger in foods. In: Sabuncuoğlu S. (Editor). Mycotoxins and food safety. IntechOpen, London. pp: 1-21. [DOI: 10.5772/intechopen.89001] [DOI:10.5772/intechopen.89001]
13. Cortésão M., De Haas A., Unterbusch R., Fujimori A., Schütze T., Meyer V., Moeller R. (2020). Aspergillus niger spores are highly resistant to space radiation. Frontiers in Microbiology. 11: 560-572. [DOI: 10.3389/fmicb.2020.00560] [DOI:10.3389/fmicb.2020.00560] [PMID] [PMCID]
14. De Guzman Z.M., De Dios C.C., Patindol J.A. (1998). Storage evaluation of gamma irradiated rice. IAEA International Nuclear Information System IAEA-CN-76/37P. URL: https://www.osti.gov/etdeweb/servlets/purl/20004653. Accessed 12 March 2025.
15. Eslami M., Mashak Z., Heshmati A., Shokrzadeh M., Mozaffari Nejad A.S. (2015). Determination of aflatoxin B1 levels in Iranian rice by ELISA method. Toxin Reviews. 34: 125-128. [DOI: 10.3109/15569543.2015.1074925] [DOI:10.3109/15569543.2015.1074925]
16. Faruq G., Prodhan Z.H., Nezhadahmadi A. (2015). Effects of ageing on selected cooking quality parameters of rice. International Journal of Food Properties. 18: 922-933. [DOI: 10.1080/10942912.2014.913062] [DOI:10.1080/10942912.2014.913062]
17. Food and Agriculture Organization (FAO). (2004). FAO and climate change. URL: https://www.fao.org/3/i0144e/i0144e.pdf. Accessed 17 August 2023.
18. Glover D., Kim S.K., Stone G.D. (2020). Golden rice and technology adoption theory: a study of seed choice dynamics among rice growers in the Philippines. Technology in Society, 60: 101227. [DOI: 10.1016/j.techsoc.2019.101227] [DOI:10.1016/j.techsoc.2019.101227]
19. Gragasin M.C.B., Villota S.M.M., Capariño O. A., De Leon A.A., Rustia J.M., Gantioque G.G., Juvinal J.G. (2022). Effect of gamma irradiation on the sensory quality of stored brown rice as influenced by age of paddy, packaging and storage period. Asian Journal of Postharvest and Mechanization. 5: 76-89. URL: https://www.philmech.gov.ph/resources/journal/AJPM%20Vol.%205%20No.1%202022_2.pdf. Accessed 12 March 2025.
20. Ijadpanahsaravi M., Snoek L.B., Teertstra W.R., Wösten H.A.B. (2024). The impact of inter-and intra-species spore density on germination of the food spoilage fungus Aspergillus niger. International Journal of Food Microbiology. 410: 110495. [DOI: 10.1016/j.ijfoodmicro.2023.110495] [DOI:10.1016/j.ijfoodmicro.2023.110495] [PMID]
21. International Rice Research Institute (IRRI). (2024). Paddy quality. URL: http://www.knowledgebank.irri.org/step-by-step-production/ postharvest/milling/milling-and-quality/item/paddy-quality. Accessed 01 January 2024.
22. International Rice Research Institute (IRRI). (2014). STAR: statistical tool for agricultural research, version 2.0. Los Baños, Philippines: IRRI. URL: https://www.irri.org/resources-and-tools/digital-tools. Accessed 12 March 2025.
23. Koch S.M., Freidank-Pohl C., Siontas O., Cortésão M., Mota A., Runzheimer K., Jung S., Rebrosova K., Siler M., Moeller R., Meyer V. (2023). Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Frontiers in Microbiology. 14: 1233740. [DOI: 10.3389/fmicb.2023.1233740] [DOI:10.3389/fmicb.2023.1233740] [PMID] [PMCID]
24. Kumar A., Khandai S., Singh M., Singh A., Panwar G.S., Kumar A., Singh S., Kumar V. (2020). Hermetic sealed storage IRRI super bag: reduces post-harvest losses in seed grains. International Journal of Chemical Studies. 8: 403-406. [DOI: 10.22271/chemi.2020.v8.i4g.10170] [DOI:10.22271/chemi.2020.v8.i4g.10170]
25. Kushiro M. (2015). Historical review of researches on yellow rice and mycotoxigenic fungi adherent to rice in Japan. JSM Mycotoxins. 65:19-23. [DOI: 10.2520/myco.65.19] [DOI:10.2520/myco.65.19]
26. Lee N.Y., Kim J.K. (2018). Effects of gamma radiation on the physicochemical properties of brown rice and changes in the quality of porridge. Radiation Physics and Chemistry. 152: 89-92. [DOI: 10.1016/j.radphyschem.2018.07.021] [DOI:10.1016/j.radphyschem.2018.07.021]
27. Luo X., Li Y., Yang D., Xing J., Li K., Yang M., Wang R., Wang L., Zhang Y., Chen Z. (2019). Effects of electron beam irradiation on storability of brown and milled rice. Journal of Stored Products Research. 81: 22-30. [DOI: 10.1016/j.jspr.2018.12.003] [DOI:10.1016/j.jspr.2018.12.003]
28. Mahajan P.V., Caleb O.J., Singh Z., Watkins C.B., Geyer M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 372: 20130309. [DOI: 10.1098/rsta.2013.0309] [DOI:10.1098/rsta.2013.0309] [PMID] [PMCID]
29. Maity J.P., Kar S., Banerjee S., Chakraborty A., Santra S.C. (2009). Effects of gamma irradiation on long-storage seeds of Oryza sativa (cv. 2233) and their surface infecting fungal diversity. Radiation Physics and Chemistry. 78: 1106-1010. [DOI: 10.1016/j.radphyschem.2009.06.002] [DOI:10.1016/j.radphyschem.2009.06.002]
30. National Food Authority (NFA). (2024). Warehouse library and status of warehouse utilization as of November 2021. URL: https://nfa.gov.ph/images/files/nfa_directory/nfa-warehouses-reg3.pdf. Accessed 12 January 2024.
31. Nemtanu M.R., Brasoveanu M., Grecu M.N., Minea R. (2005). Green coffee decontamination by electron beam irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 240: 83-86. [DOI: 10.1016/j.nimb.2005.06.092] [DOI:10.1016/j.nimb.2005.06.092]
32. Palomo A.M., Garcia R.G., Diaz D.A., Capanzana M.V. (2020). Optimization of moist-heat and dry-heat treatment for the production of stabilized brown rice using Box-Behnken design. Philippine Journal of Science. 149: 43-53. [DOI: 10.56899/149.01.05] [DOI:10.56899/149.01.05]
33. Parfitt J., Barthel M., Macnaughton S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences. 365: 3065-3081. [DOI: 10.1098/rstb.2010.0126] [DOI:10.1098/rstb.2010.0126] [PMID] [PMCID]
34. Peng B., He L.L., Tan J., Zheng L.T., Zhang J.T., Qiao Q.W., Wang Y., Gao Y., Tian X.Y., Liu Z.Y., Song X.H., Sun Y.Y., et al. (2019). Effects of rice aging on its main nutrients and quality characters. Journal of Agricultural Science. 11: 44-56. [DOI: 10.5539/jas.v11n17p44] [DOI:10.5539/jas.v11n17p44]
35. Philippine Food and Drug Administration (Philippines-FDA). (2022). FDA circular No. 2022-012: guidelines on the microbiological requirements and assessment of certain prepackaged processed food products repealing FDA circular No. 2013-010 entitled "revised guidelines for the assessment of microbiological quality of processed foods". URL: https://www.fda.gov.ph/fda-circular-no-2022-012-guidelines-on-the-microbiological-requirements-and-assessment-of-certain-prepackaged-processed-food-products-repealing-fda-circular-no-2013-010-entitled-revised-g/. Accessed 30 April 2025.
36. Philippine Rice Research Institute (PhilRice). (2018). NSIC Rc 160: tried and tested. URL: https://www.philrice.gov.ph/nsic-rc-160-tried-tested/. Accessed 12 January 2024.
37. Prakhongsil P., Sajjabut S., Pewlong W., Khemthong K., Eamsiri J., Picha R., Thamrongsiripak N. (2025). Increasing γ-aminobutyric acid in mixed germinated brown rice via electron beam irradiation. Trends in Sciences. 22: 8611. [DOI: 10.48048/tis.2024.8611] [DOI:10.48048/tis.2024.8611]
38. Ramezanzadeh F.M., Rao R.M., Prinyawiwatkul W., Marshall W.E., Windhauser M. (2000). Effects of microwave heat, packaging, and storage temperature on fatty acid and proximate compositions in rice bran. Journal of Agricultural and Food Chemistry. 48: 464-467. [DOI: 10.1021/jf9909609] [DOI:10.1021/jf9909609] [PMID]
39. Reddy K.R.N., Reddy C.S., Muralidharan K. (2009). Detection of Aspergillus spp. and aflatoxin B1 in rice in India. Food Microbiology. 26: 27-31. [DOI: 10.1016/j.fm.2008.07.013] [DOI:10.1016/j.fm.2008.07.013] [PMID]
40. Rita K.M.M.S., Turla A.Y., Endriga M.A., Agapito J.D., Deocaris C.C. (2024). Beyond preservation: a systematic review on the impact of ionizing radiation on food functionality. Philippine Journal of Science. 153: 101-112.
41. Saikrishna A., Dutta S., Subramanian V., Moses J.A., Anandharamakrishnan C. (2018). Ageing of rice: a review. Journal of Cereal Science. 81: 161-170. [DOI: 10.1016/j.jcs.2018.04.009] [DOI:10.1016/j.jcs.2018.04.009]
42. Saleh A.S., Wang P., Wang N., Yang L., Xiao Z. (2019). Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies. Comprehensive Reviews in Food Science and Food Safety. 18: 1070-1096. [DOI: 10.1111/1541-4337.12449] [DOI:10.1111/1541-4337.12449] [PMID]
43. Sales A.C., Yoshizawa T. (2005). Updated profile of aflatoxin and Aspergillus section Flavi contamination in rice and its byproducts from the Philippines. Food Additives and Contaminants. 22: 429-436. [DOI: 10.1080/02652030500058387] [DOI:10.1080/02652030500058387] [PMID]
44. Sarrı́as J.A., Valero M., Salmerón M.C. (2003). Elimination of Bacillus cereus contamination in raw rice by electron beam irradiation. Food Microbiology. 20: 327-332. [DOI: 10.1016/S0740-0020(02)00124-7] [DOI:10.1016/S0740-0020(02)00124-7]
45. Sharma A. (2004). Post-harvest processing of fruits and vegetables by ionizing radiation. Production practices and quality assessment of food crops: volume 4: preharvest treatment and technology. 1st edition. Springer Dordrecht, Netherlands. pp: 261-265. [DOI: 10.1007/1-4020-2535-1_10] [DOI:10.1007/1-4020-2535-1_10] [PMID]
46. Shobha D., Vasudevan S.N., Badigannavar A. (2024). Impact of gamma irradiation and packaging on the storage quality of little millet (Panicum sumatrense) flour. Cereal Research Communications. 52: 777-787. [DOI: 10.1007/s42976-023-00391-5] [DOI:10.1007/s42976-023-00391-5]
47. Silos A.P., Diano G.T., Abrera G.B., Baldos D.T., Gragasin M.C., Tolentino M.M., Deocaris C.C., Asaad C.O. (2024). Gamma irradiation as a method to enhance antioxidant activity and inhibit rancidification of brown rice. Radiation Physics and Chemistry, 223: 112026. [DOI: 10.1016/j.radphyschem.2024.112026] [DOI:10.1016/j.radphyschem.2024.112026]
48. Sorn V., Meas P., Pin T., Gummert M. (2017). Effects of drying and storage management on fungi (Aflatoxin B1) accumulation and rice quality in Cambodia. Journal of Agriculture and Rural Development in the Tropics and Subtropics. 118: 141-148.
49. Swamy Y.M.I., Sowbhagya C.M., Bhattacharya K.R. (1978). Changes in the physicochemical properties of rice with aging. Journal of the Science of Food and Agriculture. 29: 627-639. [DOI: 10.1002/jsfa.2740290709] [DOI:10.1002/jsfa.2740290709]
50. Tournas V., Stack M.E., Mislivec P.B., Koch H.A., Bandler, R. (2001). Chapter 18: yeasts, molds, and mycotoxins. In: Tournas V., Stack M.E., Mislivec P.B., Koch H.A., Bandler, R. (Editors). Bacteriological analytical manual (BAM). U.S. Food and Drug Administration, Maryland. URL: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-18-yeasts-molds-and-mycotoxins.
51. Wang J., Yu Y. (2010). Inactivation of mildew in rough rice and wheat by gamma irradiation. Radiation Physics and Chemistry. 79: 740-743. [DOI: 10.1016/j.radphyschem.2009.12.001] [DOI:10.1016/j.radphyschem.2009.12.001]
52. Wongnaa C.A., Ankomah E.D., Ojo T.O., Abokyi E., Sienso G., Awunyo-Vitor D. (2023). Valuing postharvest losses among tomato smallholder farmers: evidence from Ghana. Cogent Food and Agriculture. 9: 2187183. [DOI: 10.1080/23311932.2023.2187183] [DOI:10.1080/23311932.2023.2187183]
53. Zhou Z., Robards K., Helliwell S., Blanchard C. (2002). Ageing of stored rice: changes in chemical and physical attributes. Journal of Cereal Science. 35: 65-78. [DOI: 10.1006/jcrs.2001.0418] [DOI:10.1006/jcrs.2001.0418]
54. Zhou Z., Wang X., Si X., Blanchard C., Strappe P. (2015). The ageing mechanism of stored rice: a concept model from the past to the present. Journal of Stored Products Research. 64: 80-87. [DOI: 10.1016/j.jspr.2015.09.004] [DOI:10.1016/j.jspr.2015.09.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb