1. Abdelkader A.I., Ayoub M.M., Mohammed A.S. (2021). Evaluation of pesticide residues in some commonly consumed vegetables in Egypt and their related chronic exposure. Alfarama Journal of Basic and Applied Sciences. 2: 149-167. [DOI: 10.21608/ajbas. 2020.43968.1035]
2. Ahmed M.S., Prodhan M.D.H., Begum A., Afroze M., Sarker D. (2021). Estimation of residue degradation of cypermethrin and chlorpyrifos in brinjal, tomato and cauliflower under supervised field trial. Asian-Australasian Journal of Bioscience and Biotechnology. 6: 60-67. [DOI: 10.3329/aajbb.v6i2.56141] [
DOI:10.3329/aajbb.v6i2.56141]
3. Algharibeh G.R., AlFararjeh M.S. (2019). Pesticide residues in fruits and vegetables in Jordan using liquid chromatography/tandem mass spectrometry. Food Additives and Contaminants: Part B. 12: 65-73. [DOI: 10.1080/19393210.2018.1548505] [
DOI:10.1080/19393210.2018.1548505] [
PMID]
4. Bai Y., Zhou L., Wang J. (2006). Organophosphorus pesticide residues in market foods in Shaanxi area, China. Food Chemistry. 98: 240-242. [DOI: 10.1016/j.foodchem.2005.05. 070] [
DOI:10.1016/j.foodchem.2005.05.070]
5. Bakker S., Mc Mahon D., Uwase V. (2020). Patterns and determinants of fruit and vegetable consumption in urban Rwanda: results of an urban consumer study in Kigali and North-western Rwanda. Wageningen Centre for Development Innovation, Wageningen. [DOI: 10.18174/529441] [
DOI:10.18174/529441]
6. Bilaro J.S., Materu S.F., Temba B.A. (2022). Dietary risk assessment of selected organophosphorus and pyrethoid pesticide residues in fresh harvested tomatoes at Makambako Town, Njombe region, Tanzania. Food Additives and Contaminants: Part B. 15: 235-243. [DOI: 10.1080/19393210.2022.2056769] [
DOI:10.1080/19393210.2022.2056769] [
PMID]
7. Chavarri M.J., Herrera A., Ariño A. (2004). Pesticide residues in field‐sprayed and processed fruits and vegetables. Journal of the Science of Food and Agriculture. 84: 1253-1259. [DOI: 10.1002/jsfa.1791] [
DOI:10.1002/jsfa.1791]
8. Gatwaza O.C., Wang X. (2023). Predicting the future of protected areas in the region of the highest population density in sub-Saharan Africa. Journal of Sustainable Forestry. 42: 22-42. [DOI: 10.1080/10549811.2021.1933538] [
DOI:10.1080/10549811.2021.1933538]
9. Houbraken M., Habimana V., Senaeve D., López-Dávila E., Spanoghe P. (2017). Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Science of the Total Environment. 576: 888-894. [DOI: 10.1016/j.scitotenv. 2016.10.127] [
DOI:10.1016/j.scitotenv.2016.10.127] [
PMID]
10. Kafle S., Vaidya A., Pradhan B., Jørs E., Onta S. (2021). Factors associated with practice of chemical pesticide use and acute poisoning experienced by farmers in Chitwan district, Nepal. International Journal of Environmental Research and Public Health. 18: 4194. [DOI: 0.3390/ijerph18084194] [
DOI:10.3390/ijerph18084194] [
PMID] [
PMCID]
11. Kaur R., Singh J. (2021). Toxicity, monitoring, and biodegradation of cypermethrin insecticide: a review. Nature Environment and Pollution Technology. 20: 1997-2005. [DOI:10.46488/NEPT. 2021.v20i05.016] [
DOI:10.46488/NEPT]
12. Khak M.T., Khajehian A., Khajheian M.M., Esmaeili M., Ansarifar A., Ebrahimi A., Nakhaii K. (2016). Determining the residual cypermethrin, permethrin, indoxacarb and mancozeb in tomato produced in bushehr province farms. International Journal of Medical Research and health sciences. 5: 210-217.
13. Kuchheuser P., Birringer M. (2022). Pesticide residues in food in the European :union:: analysis of notifications in the European Rapid Alert System for Food and Feed from 2002 to 2020. Food Control.133: 108575. [DOI: 10.1016/j.foodcont.2021.108575] [
DOI:10.1016/j.foodcont.2021.108575]
14. Kumar A., Sharma B., Pandey R.S. (2007). Preliminary evaluation of the acute toxicity of cypermethrin and λ-cyhalothrin to Channa punctatus. Bulletin of Environmental Contamination and Toxicology. 79: 613-616. [DOI: 10.1007/s00128-007-9282-8] [
DOI:10.1007/s00128-007-9282-8] [
PMID]
15. Li C., Yang M., Li Z., Wang B. (2021). How will Rwandan land use/land cover change under high population pressure and changing climate?. Applied Sciences. 11: 5376. [DOI: 10.3390/app11125376] [
DOI:10.3390/app11125376]
16. Liang Y., Dong B., Pang N., Hu J. (2019). ROS generation and DNA damage contribute to abamectin-induced cytotoxicity in mouse macrophage cells. Chemosphere. 234: 328-337. [DOI: 10.1016/j.chemosphere.2019.06.031] [
DOI:10.1016/j.chemosphere.2019.06.031] [
PMID]
17. Ma C., Wei D., Liu P., Fan K., Nie L., Song Y., Wang M., Wang L., Xu Q., Wang J., Shi J., Geng J., et al. (2022). Pesticide residues in commonly consumed vegetables in Henan Province of China in 2020. Frontiers in Public Health. 10. [DOI: 10.3389/fpubh.2022.901485] [
DOI:10.3389/fpubh.2022.901485] [
PMID] [
PMCID]
18. Mosnier A., Schmidt-Traub G., Obersteiner M., Jones S., Javalera-Rincon V., Declerck F., Thomson M., Sperling F., Harrison P., Peréz-Guzmán K., McCord G.C., Navarro-Garcia J., et al. (2023). How can diverse national food and land-use priorities be reconciled with global sustainability targets? lessons from the FABLE initiative. Sustainability Science. 18: 335-345. [DOI: 10.1007/s11625-022-01227-7] [
DOI:10.1007/s11625-022-01227-7]
19. Mostafalou S., Abdollahi M. (2017). Pesticides: an update of human exposure and toxicity. Archives of Toxicology. 91: 549-599. [DOI: 10.1007/s00204-016-1849-x] [
DOI:10.1007/s00204-016-1849-x] [
PMID]
20. Ndayambaje B., Amuguni H., Coffin-Schmitt J., Sibo N., Ntawubizi M., VanWormer E. (2019). Pesticide application practices and knowledge among small-scale local rice growers and communities in Rwanda: a cross-sectional study. International Journal of Environmental Research and Public Health. 16: 4770. [DOI: 10.3390/ijerph16234770] [
DOI:10.3390/ijerph16234770] [
PMID] [
PMCID]
21. Negatu B., Kromhout H., Mekonnen Y., Vermeulen R. (2016). Use of chemical pesticides in ethiopia: a cross-sectional comparative study on knowledge, attitude and practice of farmers and farm workers in three farming systems. The Annals of Occupational Hygiene. 60: 551-566. [DOI:10.1093/annhyg/mew004] [
DOI:10.1093/annhyg/mew004] [
PMID]
22. Nisha U.S., Khan M.S.I., Prodhan M.D.H., Meftaul I.M., Begum N., Parven A., Shahriar S., Juraimi A.S., Hakim M.A. (2021). Quantification of pesticide residues in fresh vegetables available in local markets for human consumption and the associated health risks. Agronomy. 11: 1804. [DOI: 10.3390/ agronomy11091804] [
DOI:10.3390/agronomy11091804]
23. Payá P., Anastassiades M., Mack D., Sigalova I., Tasdelen B., Oliva J., Barba A. (2007). Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Analytical and Bioanalytical Chemistry. 389: 1697-1714. [DOI: 10.1007/s00216-007-1610-7] [
DOI:10.1007/s00216-007-1610-7] [
PMID]
24. Perez-Guzman K., Imanirareba D., Jones S.K., Neubauer R., Niyitanga F., Naramabuye F.X. (2023). Sustainability implications of Rwanda's Vision 2050 long-term development strategy. Sustainability Science. 18: 485-499. [DOI: 10.1007/s11625-022-01266-0] [
DOI:10.1007/s11625-022-01266-0]
25. Ray P.D., Huang B.-W., Tsuji Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling. 24: 981-990. [DOI: 10.1016/j.cellsig. 2012.01.008] [
DOI:10.1016/j.cellsig.2012.01.008] [
PMID] [
PMCID]
26. Rejczak T., Tuzimski T. (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry. 13: 980-1010. [DOI: 10.1515/chem-2015-0109] [
DOI:10.1515/chem-2015-0109]
27. Silvestri S., Macharia M., Uzayisenga B. (2019). Analysing the potential of plant clinics to boost crop protection in Rwanda through adoption of IPM: the case of maize and maize stem borers. Food Security. 11: 301-315. [DOI: 10.1007/s12571-019-00910-5] [
DOI:10.1007/s12571-019-00910-5]
28. Sopkoutie N.G.K., Abdulai A.N., Tarla D.N., Djeugap F.N., Galani Y.J.H., Ekengoue C.M., Tabang W.M., Nya E., Payne V.K. (2021). Phytosanitary practices and evaluation of 17 pesticides residues in tomatoes fruits produced in Foumbot District Western Highland-Cameroon. European Scientific Journal. 17: 30-50. [DOI: 10.19044/esj.2021.v17n3p30] [
DOI:10.19044/esj.2021.v17n3p30]
29. Umubyeyi S., Rukazambuga N.D.T.M. (2016). Small scale farmers' knowledge on grain losses from bean bruchid, pesticides safe use and implication on food security and safety in Huye District, Rwanda. Rwanda Journal. 1. [DOI: 10.4314/rj.v1i2S.13D] [
DOI:10.4314/rj.v1i2S.13D]
30. University of Hertfordshire (2025). BPDB: biopesticides database. URL: http://sitem.herts.ac.uk/aeru/bpdb/index.htm. Accessed 27 May 2025.
31. World Health Organization, International Programme on Chemical Safety. (2010). The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization, Geneva, Switzerland. URL: https://apps.who.int/ iris/handle/10665/44271. Accessed 27 May 2025.