Volume 12, Issue 1 (March 2025)                   J. Food Qual. Hazards Control 2025, 12(1): 61-72 | Back to browse issues page

Ethics code: Not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheir M, Mohammed N, Farroh K. Production and Evaluation of Chitosan-Collagen Nanocomposite Packaging Film from Chicken Feet Waste. J. Food Qual. Hazards Control 2025; 12 (1) :61-72
URL: http://jfqhc.ssu.ac.ir/article-1-1242-en.html
Department of Special Food and Nutrition, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt , Marwa.sheir@yahoo.com
Abstract:   (260 Views)
Background: Annually, approximately 3.9 million metric tons of chicken feet are produced. As a common poultry by-product, they are a rich collagen source, representing over 40% of total amino acids. To maximize their potential, innovative utilization is required to enhance their value. The study aimed to investigate the use of broiler chicken feet for producing acid-hydrolyzed collagen and incorporating it into chitosan-collagen composite films, including nanocomposite films.
Methods: Chitosan film, chitosan-collagen composite film, and chitosan-collagen nanocomposite film were prepared. Physical, mechanical, antioxidant, and antimicrobial properties of these composite films were evaluated and compared to identify the most suitable material for food packaging.
Results: Chitosan-collagen nanocomposite film demonstrated favorable characterizations, including mechanical, physical, antioxidant, and antimicrobial properties, in addition to lower oxygen permeability than other films.
Conclusion: Chitosan-collagen nanocomposite film is suitable as a packaging material for preservation purposes, especially in animal-based or high-fat foods.

DOI: 10.18502/jfqhc.12.1.18367
Full-Text [PDF 644 kb]   (210 Downloads) |   |   Full-Text (HTML)  (89 Views)  
Type of Study: Original article | Subject: Special
Received: 24/07/07 | Accepted: 25/02/02 | Published: 25/03/30

References
1. Abd-Alhadi R., Abou-Ghorrah S., Al Oklah B. (2023). Physical properties, antioxidant and antimicrobial activity of chitosan edible films containing essential oils. Journal of Nutrition and Food Security.8: 212-220. [DOI: 10.18502/jnfs.v8i2.12595] [DOI:10.18502/jnfs.v8i2.12595]
2. Aider M. (2010). Chitosan application for active bio-based films production and potential in the food industry: review. LWT - Food Science and Technology. 43: 837-842. [DOI: 10.1016/j.lwt.2010.01.021] [DOI:10.1016/j.lwt.2010.01.021]
3. Amirrah I.N., Lokanathan Y., Zulkiflee I., Wee M.F.M.R., Motta A., Fauzi M.B. (2022). A comprehensive review on collagen type I development of biomaterials for tissue engineering: from biosynthesis to bioscaffold. Biomedicines. 10: 2307. [DOI: 10.3390/biomedicines10092307] [DOI:10.3390/biomedicines10092307] [PMID] [PMCID]
4. Ananth K.P., Paul P.K., Paliwal H., Nath V., Nakpheng T., Srichana T.(2024). Controlled degradation and kinetics response in calcium silicate doped with sodium alginate/functionalized multi-walled carbon nanotube composite 3D scaffolds for cartilage regeneration. Journal of Materials Research and Technology. 29: 4978-4990. [DOI: 10.1016/j.jmrt.2024.02.178] [DOI:10.1016/j.jmrt.2024.02.178]
5. Apriliyani M.W., Rahayu P.P., Andriani R.D., Manab A., Purwadi, Sawitri M.E., Utama D.T. (2020). Characteristics of casein-chitosan edible coating and its preservative effect in meat during accelerated storage. IOP Conference Series: Earth and Environmental Science. 478: 012060. [DOI: 10.1088/1755-1315/478/1/012060] [DOI:10.1088/1755-1315/478/1/012060]
6. Aranaz I., Alcántara A.R., Civera M.C., Arias C., Elorza B., Caballero A.H., Acosta N.(2021).Chitosan: an overview of its properties and applications. Polymers. 13: 3256. [DOI: 10.3390/polym13193256] [DOI:10.3390/polym13193256] [PMID] [PMCID]
7. Azizah F., Nursakti H., Ningrum A., Supriyadi. (2023).Development of edible composite film from fish gelatin-pectin incorporated with lemongrass essential oil and its application in chicken meat. Polymers. 15: 2075. [DOI: 10.3390/polym15092075] [DOI:10.3390/polym15092075] [PMID] [PMCID]
8. Berechet M.D., Gaidau C., Nešić A., Constantinescu R.R., Simion D., Niculescu O., Stelescu M.D., Sandulache I., Râpă M. (2023). Antioxidant and antimicrobial properties of hydrolysed collagen nanofibers loaded with ginger essential oil. Materials. 16: 1438. [DOI: 10.3390/ma16041438] [DOI:10.3390/ma16041438] [PMID] [PMCID]
9. Castaldo L., Izzo L., De Pascale S., Narváez A., Rodriguez-Carrasco Y., Ritieni A. (2021). Chemical composition, in vitro bioaccessibility and antioxidant activity of polyphenolic compounds from nutraceutical fennel waste extract. Molecules. 26: 1968. [DOI: 10.3390/ molecules26071968] [DOI:10.3390/molecules26071968]
10. Cerqueira M.A., Souza B.W.S., Teixeira J.A., Vicente A.A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films - a comparative study. Food Hydrocolloids. 27: 175-184. [DOI: 10.1016/j.foodhyd. 2011.07.007] [DOI:10.1016/j.foodhyd.2011.07.007]
11. Cheng F.-Y., Hsu F.-W., Chang H.-S., Lin L.-C., Sakata R. (2009). Effect of different acids on the extraction of pepsin-solubilised collagen containing melanin from silky fowl feet. Food Chemistry. 113: 563-567. [DOI: 10.1016/j.foodchem.2008.08.043] [DOI:10.1016/j.foodchem.2008.08.043]
12. Chuaychan S., Benjakul S., Kishimura H. (2015) .Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer). LWT - Food Science and Technology. 63: 71-76. [DOI: 10.1016/j.lwt.2015.03.002] [DOI:10.1016/j.lwt.2015.03.002]
13. Dalle Zotte A., Ricci R., Cullere M., Serva L., Tenti S., Marchesini G. (2020). Research note: effect of chicken genotype and white striping-wooden breast condition on breast meat proximate composition and amino acid profile. Poultry Science. 99: 1797-1803. [DOI: 10.1016/j.psj.2019.10.066] [DOI:10.1016/j.psj.2019.10.066] [PMID] [PMCID]
14. Delavari M.M., Ocampo I., Stiharu I. (2022). Optimizing biodegradable starch-based composite films formulation for wound-dressing applications. Micromachines. 13: 2146. [DOI: 10.3390/mi13122146] [DOI:10.3390/mi13122146] [PMID] [PMCID]
15. Elsebaie E.M., Mousa M.M., Abulmeaty S.A., Shaat H.A.Y., Elmeslamy S.A.-E., Asker G.A., Faramawy A.A., Shaat H.A.Y., Abd Elrahman W.M., Eldamaty H.S.E., Abd Allah A.L., Badr M.R. (2023). Chitosan-based green pea (Pisum sativum L.) pod extract gel film: characterization and application in food packaging. Gels. 9: 77. [DOI: 10.3390/gels9020077] [DOI:10.3390/gels9020077] [PMID] [PMCID]
16. Fatima S., Mir M.I., Khan M.R., Sayyed R.Z., Mehnaz S., Abbas S., Sadiq M.B., Masih R. (2022). The optimization of gelatin extraction from chicken feet and the development of gelatin based active packaging for the shelf-life extension of fresh grapes. Sustainability. 14: 7881. [DOI: 10.3390/su14137881] [DOI:10.3390/su14137881]
17. González-Palma I., Escalona-Buendía H.B., Ponce-Alquicira E., Téllez-Téllez M., Gupta VK., Díaz-Godínez G., Soriano-Santos J. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology. 7: 1099. [DOI: 10.3389/fmicb.2016.01099] [DOI:10.3389/fmicb.2016.01099] [PMID] [PMCID]
18. Haghighi H., Licciardello F., Fava P., Siesler H.W., Pulvirenti A. (2020). Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life. 26: 100551. [DOI: 10.1016/j.fpsl.2020.100551] [DOI:10.1016/j.fpsl.2020.100551]
19. Hashim P., Mohd Ridzwan M.S., Bakar J. (2014). Isolation and characterization of collagen from chicken feet. World Academy of Science, Engineering and Technology International Journal of Bioengineering and Life Sciences. 8: .250-254. [DOI: 10.5281/zenodo.1091484]
20. Hosseini M.H., Razavi S.H., Mousavi S.M.A., Yasaghi S.A.S.Y., Hasansaraei A.G. (2008). Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. Journal of Applied Sciences. 8: 2895-2900. [DOI: 10.3923/jas.2008.2895.2900] [DOI:10.3923/jas.2008.2895.2900]
21. Hromiš N., Lazić V., Popović S., Markov S.,Vaštag Ž., Šuput D., Bulut S., Tomović V. (2016). Investigation of a product-specific active packaging material based on chitosan biofilm with spice oleoresins. Journal of Food and Nutrition Research. 55: 78-88
22. Kishimoto N.(2021). Light protection performance of wrapping films to prevent the photo-oxidation of extra virgin olive oil during storage in glass bottles. AIMS Agriculture and Food. 6: 786-796. [DOI: 10.3934/agrfood.2021047] [DOI:10.3934/agrfood.2021047]
23. Kurek M., Benbettaieb N., Ščetar M., Chaudy E., Repajić M., Klepac D.,Valić S., Debeaufort F., Galić K. (2021). Characterization of food packaging films with blackcurrant fruit waste as a source of antioxidant and color sensing intelligent material. Molecules. 26: 2569. [DOI: 10.3390/molecules26092569] [DOI:10.3390/molecules26092569] [PMID] [PMCID]
24. Lima C.A., Campos J.F., Lima Filho J.L., Converti A., Da Cunha M.G.C., Porto A.L. (2015). Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology. 52: 4459-66. [DOI: 10.1007/s13197-014-1463-y] [DOI:10.1007/s13197-014-1463-y] [PMID] [PMCID]
25. Liu D.C., Lin Y.K., Chen M.T. (2001). Optimum condition of extracting collagen from chicken feet and its characteristics. Asian-Australasian Journal of Animal Sciences. 14: 1638-1644. [DOI: 10.5713/ajas.2001.1638] [DOI:10.5713/ajas.2001.1638]
26. López-Mata M.A., Ruiz-Cruz S., Silva-Beltrán N.P., Ornelas-Paz J.D.J., Ocaño-Higuera V.M., Rodríguez-Félix F., Cira-Chávez L.A., Del-Toro-Sánchez C.L., Shirai K. (2015). Physicochemical and antioxidant properties of chitosan films incorporated with cinnamon oil. International Journal of Polymer Science. 25. [DOI: 10.1155/2015/974506] [DOI:10.1155/2015/974506]
27. Mokrejs P., Gal R., Janaeova D., Plakova M., Zacharova M. (2017). Chicken paws by-products as an alternative source of proteins. Oriental Journal of Chemistry. 33: 2209-2216. [DOI: 10.13005/ojc/330508] [DOI:10.13005/ojc/330508]
28. Momtaz M., Momtaz E., Mehrgardi M.A., Momtaz F., Narimani T., Poursina F. (2024). .Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Scientific Reports. 14: 519. [DOI: 10.1038/s41598-023-50260-8] [DOI:10.1038/s41598-023-50260-8] [PMID] [PMCID]
29. Ningrum A., Perdani A.W., Supriyadi, Munawaroh H.S.H., Aisyah S., Susanto E. (2021). Characterization of tuna skin gelatin edible films with various plasticizers-essential oils and their effect on beef appearance. Journal of Food Processing and Preservation. 45: e15701. [DOI: 10.1111/jfpp.15701] [DOI:10.1111/jfpp.15701]
30. Nurilmala M., Hizbullah H.H., Karnia E., Kusumaningtyas E., Ochiai Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Marine Drugs. 18: 98. [DOI: 10.3390/md18020098] [DOI:10.3390/md18020098] [PMID] [PMCID]
31. Okerman H.W. (1984). Quality control of post-mortem muscle tissue. Microbiology. 12th edition. The Ohio State University, Ohio, USA.
32. Ozturk-Kerimoglu B., Heres A., Mora L., Toldrá F. (2023). Antioxidant peptides generated from chicken feet protein hydrolysates. Journal of The Science of Food and Agriculture. 103: 7207-7217. [DOI: 10.1002/jsfa.12802] [DOI:10.1002/jsfa.12802] [PMID]
33. Padmavathy N., Vijayaraghavan R. (2011). Interaction of ZnO nanoparticles with microbes-a physio and biochemical assay. Journal of Biomedical Nanotechnology. 7: 813-822. [DOI: 10.1166/jbn.2011.1343] [DOI:10.1166/jbn.2011.1343] [PMID]
34. Pranoto Y., Rakshit S.K., Salokhe V.M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT - Food Science and Technology. 38: 859-865. [DOI: 10.1016/j.lwt.2004.09.014] [DOI:10.1016/j.lwt.2004.09.014]
35. Rawdkuen S., Suthiluk P., Kamhangwong D., Benjakul S. (2012). Mechanical, physico-chemical, and antimicrobial properties of gelatin-based film incorporated with catechin-lysozyme. Chemistry Central Journal. 6: 131. [DOI: 10.1186/1752-153X-6-131] [DOI:10.1186/1752-153X-6-131] [PMID] [PMCID]
36. Sameni A., Pourafshary P., Ghanbarzadeh M., Ayatollahi s.(2015). Effect of nanoparticles on clay swelling and migration. Egyptian Journal of Petroleum. 24: 429-437. [DOI: 10.1016/j.ejpe.2015.10.006] [DOI:10.1016/j.ejpe.2015.10.006]
37. Samrot V.A., Singh S.P.R., Deenadhayalan R., Rajesh V.V., Padmanaban S., Radhakrishnan R. (2020). Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties-a review. Oxygen. 2: 591-604. [DOI: 10.3390/oxygen2040039] [DOI:10.3390/oxygen2040039]
38. Santana J.C.C., Gardim R.B., Almeida P.F., Borini G.B., Quispe A.P.B., Llanos S.A.V., Heredia J.A., Zamuner S., Gamarra F.M.C., Farias T.M.B., HO L.L., Berssaneti F.T. (2020). Valorization of chicken feet by-product of the poultry industry: high qualities of gelatin and biofilm from extraction of collagen. Polymers. 12: 529. [DOI: 10.3390/polym12030529] [DOI:10.3390/polym12030529] [PMID] [PMCID]
39. Sharkawy A., Barreiro M.F., Rodrigues A.E. (2021). New pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 616: 126327. [DOI: 10.1016/j.colsurfa.2021.126327] [DOI:10.1016/j.colsurfa.2021.126327]
40. Sharmin S., Rahaman M., Sarkar C., Atolani O., Islam M.T., Adeyemi O.S. (2021). Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon. 7: e06456. [DOI: 10.1016/j.heliyon.2021.e06456] [DOI:10.1016/j.heliyon.2021.e06456] [PMID] [PMCID]
41. Shi B., Hao Z., Du Y., Jia M., Xie S. (2024). Mechanical and barrier properties of chitosan-based composite film as food packaging: a review. BioResources. 19: 4001-4014. [DOI:10.15376/biores.19.2.Shi] [DOI:10.15376/biores.19.2.Shi]
42. Siripatrawan U., Harte B.R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 24: 770-775. [DOI: 10.1016/j.foodhyd.2010.04.003] [DOI:10.1016/j.foodhyd.2010.04.003]
43. Steel R.G.D., Torrie J.H., Dickey D.A. (1997). Principles and procedures of statistics: a biometric approach. 3rd edition. McGraw-Hill Book Company, Inc, New York, USA.
44. Tang C., Liu H. (2008). Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Composites Part A: Applied Science and Manufacturing. 39: 1638-1643. [DOI: 10.1016/j.compositesa.2008.07.005] [DOI:10.1016/j.compositesa.2008.07.005]
45. Valgimigli L., Baschieri A., Amorati R. (2018). Antioxidant activity of nanomaterials. Journal of Materials Chemistry. B. 6: 2036-2051. [DOI: 10.1039/c8tb00107c] [DOI:10.1039/C8TB00107C] [PMID]
46. Wahidin M., Srimarlita A., Sulaiman I., Indarti E. (2021). Transparency and thickness of jackfruit and durian seed starch edible film. IOP Conference Series: Earth and Environmental Science. 667: 012030. [DOI: 10.1088/1755-1315/667/1/012030] [DOI:10.1088/1755-1315/667/1/012030]
47. Wang H., Hu D., Ma Q., Wang L. (2016). Physical and antioxidant properties of flexible soy protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. LWT - Food Science and Technology. 71: 33-39. [DOI: 10.1016/j.lwt.2016.03.025] [DOI:10.1016/j.lwt.2016.03.025]
48. Wang H., Qian J., Ding F. (2018). Emerging chitosan-based films for food packaging applications. Journal of Agricultural and Food Chemistry. 66: 395-413. [DOI: 10.1021/acs.jafc.7b04528] [DOI:10.1021/acs.jafc.7b04528] [PMID]
49. Youssef A.M., El-Sayed H.S., EL-Nagar I., El-Sayed S.M. (2021). Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Advances. 11: 22571-22584. [DOI: 10.1039/ d1ra03819b] [DOI:10.1039/D1RA03819B]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of food quality and hazards control

Designed & Developed by : Yektaweb