1. Aguayo-Mendoza M.G., Ketel E.C., Van Der Linden E., Forde C.G., Piqueras-Fiszman B., Stieger M. (2019). Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Quality and Preference. 71: 87-95. [DOI: 10.1016/j.foodqual.2018.06.006] [
DOI:10.1016/j.foodqual.2018.06.006]
2. Aguilar-Raymundo V.G., Vélez-Ruiz J.F. (2018). Physicochemical and rheological properties of a dairy dessert, enriched with chickpea flour. Foods. 7: 25. [DOI: 10.3390/foods7020025] [
DOI:10.3390/foods7020025] [
PMID] [
PMCID]
3. Ahmed J. (2018). Advances in rheological measurements of food products. Current Opinion in Food Science. 23: 127-132. [DOI: 10.1016/j.cofs.2018.10.007] [
DOI:10.1016/j.cofs.2018.10.007]
4. Ahmed J., Barua S., Roy S. (2023). Rheology and microstructure of yogurt. In: Ahmed J., Basu S. (Editors). Advances in food rheology and its applications. Woodhead Publishing, Sawston, Cambridge. pp: 335-363. [DOI: 10.1016/B978-0-12-823983-4.00020-0] [
DOI:10.1016/B978-0-12-823983-4.00020-0]
5. Álvarez E., Cancela M.A., Maceiras R. (2006). Effect of temperature on rheological properties of different jams. International Journal of Food Properties. 9: 135-146. [DOI: 10.1080/10942910500473996] [
DOI:10.1080/10942910500473996]
6. Atik D.S., Öztürk H.İ., Akın N. (2024). Perspectives on the yogurt rheology. International Journal of Biological Macromolecules. 263: 130428. [DOI: 10.1016/j.ijbiomac.2024.130428] [
DOI:10.1016/j.ijbiomac.2024.130428] [
PMID]
7. Chen J., Lolivret L. (2011). The determining role of bolus rheology in triggering a swallowing. Food Hydrocolloids. 25: 325-332. [DOI: 10.1016/j.foodhyd.2010.06.010] [
DOI:10.1016/j.foodhyd.2010.06.010]
8. De Souza Mendes P.R., Thompson R.L. (2012). A critical overview of elasto-viscoplastic thixotropic modeling. Journal of Non-Newtonian Fluid Mechanics. 187-188: 8-15. [DOI: 10.1016/j.jnnfm.2012.08.006] [
DOI:10.1016/j.jnnfm.2012.08.006]
9. Diamante L., Umemoto M. (2015). Rheological properties of fruits and vegetables: a review. International Journal of Food Properties. 18: 1191-1210. [DOI: 10.1080/10942912.2014.898653] [
DOI:10.1080/10942912.2014.898653]
10. Eroglu A., Bayrambaş K., Eroglu Z., Toker O.S., Yilmaz M.T., Karaman S., Dogan M. (2016). Steady, dynamic, creep/recovery, and textural properties of yoghurt/molasses blends: temperature sweep tests and applicability of Cox-Merz rule. Food Science and Technology International. 22: 31-46. [DOI: 10.1177/1082013214566478] [
DOI:10.1177/1082013214566478] [
PMID]
11. Flores-Jiménez N.T., Ulloa J.A., Urías-Silvas J.E., Hidalgo-Millán A. (2023). Modification of rheological properties of animal and vegetable proteins treated with high-intensity ultrasound: a review. Food Frontiers. 4 : 700-720. [DOI: 10.1002/fft2.220] [
DOI:10.1002/fft2.220]
12. Gilbert A., Turgeon S.L. (2021). Studying stirred yogurt microstructure and its correlation to physical properties: a review. Food Hydrocolloids. 121: 106970. [DOI: 10.1016/ j.foodhyd.2021.106970] [
DOI:10.1016/j.foodhyd.2021.106970]
13. Guénard-Lampron V., St-Gelais D., Villeneuve S., Turgeon S.L. (2019). Individual and sequential effects of stirring, smoothing, and cooling on the rheological properties of nonfat yogurts stirred with a technical scale unit. Journal of Dairy Science. 102: 190-201. [DOI: 10.3168/jds.2018-14565] [
DOI:10.3168/jds.2018-14565] [
PMID]
14. Guénard-Lampron V., Villeneuve S., St-Gelais D., Turgeon S.L. (2020). Relationship between smoothing temperature, storage time, syneresis and rheological properties of stirred yogurt. International Dairy Journal. 109: 104742. [DOI: 10.1016/j.idairyj.2020.104742] [
DOI:10.1016/j.idairyj.2020.104742]
15. Heldman D.R., Lund D.B., Sabliov C. (2006). Rheological properties of foods. In: Dogan H., Kokini J.L. (Editors). Handbook of food engineering. CRC Press, Boca Raton, Florida. pp: 13-136. [DOI: 10.1201/9781420014372] [
DOI:10.1201/9781420014372] [
PMCID]
16. Javanmard M., Wong E., Howes T., Stokes J.R. (2018). Application of the thixotropic elasto-viscoplastic model as a structure probing technique for acid milk gel suspensions. Journal of Food Engineering. 222: 250-257. [DOI: 10.1016/j.jfoodeng.2017.11.031] [
DOI:10.1016/j.jfoodeng.2017.11.031]
17. Kouřilová V., Dufková R., Hřivna L., Kumbár V. (2022). Use of rheological plastic models to describe the flow behaviour of unconventional chocolate masses. Czech Journal of Food Sciences. 40: 305-312. [DOI: 10.17221/57/2022-CJFS] [
DOI:10.17221/57/2022-CJFS]
18. Martínez-Padilla L.P. (2024). Rheology of liquid foods under shear flow conditions: recently used models. Journal of Texture Studies. 55: e12802. [DOI: 10.1111/jtxs.12802] [
DOI:10.1111/jtxs.12802] [
PMID]
19. Mathias T.R.D.S., De Carvalho Junior I.C., De Carvalho C.W.P., Sérvulo E.F.C. (2011). Rheological characterization of coffee-flavored yogurt with different types of thickener. Alimentos e Nutrição. 22: 521-529.
20. Melito H.S., Daubert C.R., Foegeding E.A. (2012). Creep and large-amplitude oscillatory shear behavior of whey protein isolate/κ-carrageenan gels. Applied Rheology. 22: 63691. [DOI: 10.3933/applrheol-22-63691]
21. Mullineux G., Simmons M.J.H. (2007). Effects of processing on shear rate of yoghurt, Journal of Food Engineering. 79: 850--857. [DOI: 10.1016/j.jfoodeng.2006.03.005] [
DOI:10.1016/j.jfoodeng.2006.03.005]
22. Mullineux G., Simmons M.J.H. (2008). Influence of rheological model on the processing of yoghurt. Journal of Food Engineering. 84: 250-257. [DOI: 10.1016/j. jfoodeng. 2007.05.015] [
DOI:10.1016/j.jfoodeng.2007.05.015]
23. Najgebauer-Lejko D., Witek M., Żmudziński D., Ptaszek A. (2020). Changes in the viscosity, textural properties, and water status in yogurt gel upon supplementation with green and Pu-erh teas. Journal of Dairy Science. 103: 11039-11049. [DOI: 10.3168/jds.2020-19032] [
DOI:10.3168/jds.2020-19032] [
PMID]
24. National Dysphagia Diet Task Force, American Dietetic Association. (2002). National dysphagia diet: standardization for optimal care. 1st edition. American Dietetic Association, Chicago.
25. Ouyang K., Xie H., Wu K., Xiong H., Zhao Q. (2024). Improving fermented milk products using pH-responsive whey protein fibrils: a case study on stirred yogurt. Food Bioscience. 104507. [DOI: 10.1016/j.fbio.2024.104507] [
DOI:10.1016/j.fbio.2024.104507]
26. Poursani P., Razavi S.M.A. (2023). Thickened fluids classification based on the rheological and tribological characteristics. Applied Rheology. 33: 20230102. [DOI: 10.1515/arh-2023-0102] [
DOI:10.1515/arh-2023-0102]
27. Szwajgier D., Gustaw W. (2015). The addition of malt to milk-based desserts: influence on rheological properties and phenolic acid content. LWT-Food Science and Technology. 62: 400-407. [DOI: 10.1016/j.lwt.2015.01.028] [
DOI:10.1016/j.lwt.2015.01.028]
28. Toker O.S., Karaman S., Yuksel F., Dogan M., Kayacier A., Yilmaz M.T. (2013). Temperature dependency of steady, dynamic, and creep-recovery rheological properties of ice cream mix. Food and Bioprocess Technology. 6: 2974-2985. [DOI: 10.1007/s11947-012-1005-4] [
DOI:10.1007/s11947-012-1005-4]
29. Vukić D.V., Vukić V.R., Milanović S.D., Ilicić M.D., Kanurić K.G. (2018). Modeling of rheological characteristics of the fermented dairy products obtained by novel and traditional starter cultures. Journal of Food Science and Technology. 55: 2180-2188. [DOI: 10.1007%2Fs13197-018-3135-9] [
DOI:10.1007/s13197-018-3135-9] [
PMID] [
PMCID]
30. Zarzycki P., Ciołkowska A.E., Jabłońska-Ryś E., Gustaw W. (2019). Rheological properties of milk-based desserts with the addition of oat gum and κ-carrageenan. Journal of Food Science and Technology. 56: 5107-5115. [DOI: 10.1007/s13197-019-03983-4] [
DOI:10.1007/s13197-019-03983-4] [
PMID] [
PMCID]